ﻻ يوجد ملخص باللغة العربية
Cross-resonance interactions are a promising way to implement all-microwave two-qubit gates with fixed-frequency qubits. In this work, we study the dependence of the cross-resonance interaction rate on qubit-qubit detuning and compare with a model that includes the higher levels of a transmon system. To carry out this study we employ two transmon qubits--one fixed frequency and the other flux tunable--to allow us to vary the detuning between qubits. We find that the interaction closely follows a three-level model of the transmon, thus confirming the presence of an optimal regime for cross-resonance gates.
The realization of a coherent interface between distant charge or spin qubits in semiconductor quantum dots is an open challenge for quantum information processing. Here we demonstrate both resonant and non-resonant photon-mediated coherent interacti
A current bottleneck for quantum computation is the realization of high-fidelity two-qubit quantum operations between two and more quantum bits in arrays of coupled qubits. Gates based on parametrically driven tunable couplers offer a convenient meth
Here, we propose a scheme to generate a controllable Ising interaction between superconducting flux qubits. Existing schemes rely on inducting couplings to realize Ising interactions between flux qubits, and the interaction strength is controlled by
We propose a tunable coupler consisting of N fixed-frequency qubits, which can tune and even amplify the effective interaction between two superconducting quantum circuits. The tuning range of the interaction is proportional to N, with a minimum valu
Fixed-frequency qubits can suffer from always-on interactions that inhibit independent control. Here, we address this issue by experimentally demonstrating a superconducting architecture using qubits that comprise of two capacitively-shunted Josephso