ترغب بنشر مسار تعليمي؟ اضغط هنا

Using the measured optical response and surface roughness topography as inputs, we perform realistic calculations of the combined effect of Casimir and electrostatic forces on the actuation dynamics of micro-electromechanical systems (MEMS). In contr ast with the expectations, roughness can influence MEMS dynamics even at distances between bodies significantly larger than the root-mean-square roughness. This effect is associated with statistically rare high asperities that can be locally close to the point of contact. It is found that, even though surface roughness appears to have a detrimental effect on the availability of stable equilibria, it ensures that those equilibria can be reached more easily than in the case of flat surfaces. Hence our findings play a principal role for the stability of microdevices such as vibration sensors, switches, and other related MEM architectures operating at distances below 100 nm.
Up to now there has been no reliable method to calculate the Casimir force when surface roughness becomes comparable with the separation between bodies. Statistical analysis of rough Au films demonstrates rare peaks with heights considerably larger t han the root-mean-square (rms) roughness. These peaks define the minimal distance between rough surfaces and can be described with extreme value statistics. We show that the contributions of high peaks to the force can be calculated independently of each other while the contribution of normal roughness can be evaluated perturbatively beyond the proximity force approximation. The developed method allows a reliable force estimation for short separations. Our model explains the strong hitherto unexplained deviation from the normal Casimir scaling observed experimentally at short separations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا