ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate the spatial distribution of chemical abundances in a sample of low metallicity Wolf-Rayet (WR) galaxies selected from the SDSS. We used the integral field spectroscopy technique in the optical spectral range (3700-6850 AA) with PMAS at tached to the CAHA 3.5 m telescope. Our statistical analysis of the spatial distributions of O/H and N/O, as derived using the direct method or strong-line parameters consistent with it, indicates that metallicity is homogeneous in five out of the six analysed objects in scales of the order of several kpc. Only in the object WR404, a gradient of metallicity is found in the direction of the low surface brightness tail. In contrast,we found an overabundance of N/O in spatial scales of the order of hundreds of pc associated with or close to the positions of the WR stars in 4 out of the 6 galaxies. We exclude possible hydrodynamical causes, such as the metal-poor gas inflow, for this local pollution by means of the analysis of the mass-metallicity relation (MZR) and mass-nitrogen-to-oxygen relation (MNOR) for the WR galaxies catalogued in the SDSS.
178 - Brent Groves , 2011
High resolution spectra are necessary to distinguish and correctly measure the Balmer emission lines due to the presence of strong metal and Balmer absorption features in the stellar continuum. This accurate measurement is necessary for use in emissi on line diagnostics, such as the Balmer decrement (i.e. Halpha/Hbeta), used to determine the attenuation of galaxies. Yet at high redshifts obtaining such spectra becomes costly. Balmer emission line equivalent widths are much easier to measure, requiring only low resolution spectra or even simple narrow band filters and therefore shorter observation times. However a correction for the stellar continuum is still needed for this equivalent width Balmer decrement. We present here a statistical analysis of the Sloan Digital Sky Survey Data Release 7 emission line galaxy sample, using the spectrally determined Balmer emission line fluxes and equivalent widths. Using the large numbers of galaxies available in the SDSS catalogue, we determined an equivalent width Balmer decrement including a statistically-based correction for the stellar continuum. Based on this formula, the attenuation of galaxies can now be obtained from low spectral resolution observations. In addition, this investigation also revealed an error in the Hbeta line fluxes, within the SDSS DR7 MPA/JHU catalogue, with the equivalent widths underestimated by average ~0.35A in the emission line galaxy sample. This error means that Balmer decrement determined attenuations are overestimated by a systematic 0.1 magnitudes in A_V, and future analyses of this sample need to include this correction.
105 - Jarle Brinchmann 2009
The stellar populations of galaxies contain a wealth of detailed information. From the youngest, most massive stars, to almost invisible remnants, the history of star formation is encoded in the stars that make up a galaxy. Extracting some, or all, of this informationhas long been a goal of stellar population studies. This was achieved in the last couple of decades and it is now a routine task, which forms a crucial ingredient in much of observational galaxy evolution, from our Galaxy out to the most distant systems found. In many of these domains we are now limited not by sample size, but by systematic uncertainties and this will increasingly be the case in the future. The aim of this review is to outline the challenges faced by stellar population studies in the coming decade within the context of upcoming observational facilities. I will highlight the need to better understand the near-IR spectral range and outline the difficulties presented by less well understood phases of stellar evolution such as thermally pulsing AGB stars, horizontal branch stars and the very first stars. The influence of rotation and binarity on stellar population modeling is also briefly discussed.
158 - Jarle Brinchmann 2008
We have used extensive libraries of model and empirical galaxy spectra (assembled respectively from the population synthesis code of Bruzual and Charlot and the fourth data release of the Sloan Digital Sky Survey) to interpret some puzzling features seen in the spectra of high redshift star-forming galaxies. We show that a stellar He II 1640 emission line, produced in the expanding atmospheres of Of and Wolf-Rayet stars, should be detectable with an equivalent width of 0.5-1.5AA in the integrated spectra of star-forming galaxies, provided the metallicity is greater than about half solar. Our models reproduce the strength of the He II 1640 line measured in the spectra of Lyman break galaxies for established values of their metallicities. With better empirical calibrations in local galaxies, this spectral feature has the potential of becoming a useful diagnostic of massive star winds at high, as well as low, redshifts. We also uncover a relationship in SDSS galaxies between their location in the [O III]/Hb vs. [N II]/Ha diagnostic diagram (the BPT diagram) and their excess specific star formation rate relative to galaxies of similar mass. We infer that an elevated ionisation parameter U is at the root of this effect, and propose that this is also the cause of the offset of high redshift star-forming galaxies in the BPT diagram compared to local ones. We further speculate that higher electron densities and escape fractions of hydrogen ionising photons may be the factors responsible for the systematically higher values of U in the H II regions of high redshift galaxies. The impact of such differences on abundance determinations from strong nebular lines are considered and found to be relatively minor.
89 - Anna Gallazzi 2008
We combine stellar metallicity and stellar mass estimates for a large sample of galaxies drawn from the SDSS DR2 spanning wide ranges in physical properties, in order to derive an inventory of the total mass of metals and baryons locked up in stars t oday. Physical parameter estimates are derived from galaxy spectra with high S/N (>20). Coadded spectra of galaxies with similar velocity dispersions, absolute r-band magnitudes and 4000AA-break values are used for those regions of parameter space where individual spectra have lower S/N. We estimate the total density of metals and of baryons in stars and, from these two quantities, we obtain a mass- and volume-averaged stellar metallicity of <Z_star>=1.04+-0.14 Z_sun, i.e. consistent with solar. We also study how metals are distributed in galaxies according to their mass, morphology and age, and we then compare these distributions with the corresponding distributions of stellar mass. We find that the bulk of metals locked up in stars in the local Universe reside in massive, bulge-dominated galaxies, with red colours and high 4000AA-break values corresponding to old stellar populations. Bulge-dominated and disc-dominated galaxies contribute similar amounts to the total stellar mass density, but have different fractional contributions to the mass density of metals in stars, in agreement with the mass-metallicity relation. Bulge-dominated galaxies contain roughly 40% of the total amount of metals in stars, while disc-dominated galaxies less than 25%. Finally, at a given galaxy stellar mass, we define two characteristic ages as the median of the distributions of mass and metals as a function of age. These characteristic ages decrease progressively from high-mass to low-mass galaxies, consistent with the high formation epochs of stars in massive galaxies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا