ترغب بنشر مسار تعليمي؟ اضغط هنا

A hole injected into a Mott insulator will gain an internal structure as recently identified by exact numerics, which is characterized by a nontrivial quantum number whose nature is of central importance in understanding the Mott physics. In this wor k, we show that a spin texture associated with such an internal degree of freedom can explicitly manifest after the spin degeneracy is lifted by a emph{weak} Rashba spin-orbit coupling (SOC). It is described by an emergent angular momentum $J_{z}=pm3/2$ as shown by both exact diagonalization (ED) and variational Monte Carlo (VMC) calculations, which are in good agreement with each other at a finite size. In particular, as the internal structure such a spin texture is generally present in the hole composite even at high excited energies, such that a corresponding texture in momentum space, extending deep inside the Brillouin zone, can be directly probed by the spin-polarized angle-resolved photoemission spectroscopy (ARPES). This is in contrast to a Landau quasiparticle under the SOC, in which the spin texture induced by SOC will not be protected once the excited energy is larger than the weak SOC coupling strength, away from the Fermi energy. We point out that the spin texture due to the SOC should be monotonically enhanced with reducing spin-spin correlation length in the superconducting/pseudogap phase at finite doping. A brief discussion of a recent experiment of the spin-polarized ARPES will be made.
We study the ground state properties of the Hubbard model on a 4-leg cylinder with doped hole concentration per site $deltaleq 12.5%$ using density-matrix renormalization group. By keeping a large number of states for long system sizes, we find that the nature of the ground state is remarkably sensitive to the presence of next-nearest-neighbor hopping $t$. Without $t$ the ground state of the system corresponds with the insulating filled stripe phase with long-range charge-density-wave (CDW) order and short-range incommensurate spin correlations appears. However, for a small negative $t$ a phase characterized by coexisting algebraic d-wave superconducting (SC)- and algebraic CDW correlations. In addition, it shows short range spin- and fermion correlations consistent with a canonical Luther-Emery (LE) liquid, except that the charge- and spin periodicities are consistent with half-filled stripes instead of the $4 k_F$ and $2 k_F$ wavevectors generic for one dimensional chains. For a small positive $t$ yet another phase takes over showing similar SC and CDW correlations. However, the fermions are now characterized by a (near) infinite correlation length while the gapped spin system is characterized by simple staggered antiferromagnetic correlations. We will show that this is consistent with a LE formed from a weakly coupled (BCS like) d-wave superconductor on the ladder where the interactions have only the effect to stabilize a cuprate style magnetic resonance.
90 - Jan Zaanen 2018
Could it be that the matter from the electrons in high Tc superconductors is of a radically new kind that may be called many body entangled compressible quantum matter? Much of this text is intended as an easy to read tutorial, explaining recent theo retical advances that have been unfolding at the cross roads of condensed matter- and string theory, black hole physics as well as quantum information theory. These developments suggest that the physics of such matter may be governed by surprisingly simple principles. My real objective is to present an experimental strategy to test critically whether these principles are actually at work, revolving around the famous linear resistivity characterizing the strange metal phase. The theory suggests a very simple explanation of this unreasonably simple behavior that is actually directly linked to remarkable results from the study of the quark gluon plasma formed at the heavy ion colliders: the fast hydrodynamization and the minimal viscosity. This leads to high quality predictions for experiment: the momentum relaxation rate governing the resistivity relates directly to the electronic entropy, while at low temperatures the electron fluid should become unviscous to a degree that turbulent flows can develop even on the nanometre scale.
The cuprate high-temperature superconductors are known to host a wide array of effects due to interactions and disorder. In this work, we look at some of the consequences of these effects which can be visualized by scanning tunneling spectroscopy. Th ese interaction and disorder effects can be incorporated into a mean-field description by means of a self-energy appearing in the Greens function. We first examine the quasiparticle scattering interference spectra in the superconducting state at optimal doping as temperature is increased. Assuming agreement with angle-resolved photoemission experiments which suggest that the scattering rate depends on temperature, resulting in the filling of the $d$-wave gap, we find that the peaks predicted by the octet model become progressively smeared as temperature is increased. When the scattering rate is of the same order of magnitude as the superconducting gap, the spectral function shows Fermi-arc-like patterns, while the power spectrum of the local density of states shows the destruction of the octet-model peaks. We next consider the normal state properties of the optimally-doped cuprates. We model this by adding a marginal Fermi liquid self-energy to the normal-state propagator, and consider the dependence of the QPI spectra on frequency, temperature, and doping. We demonstrate that the MFL self-energy leads to a smearing of the caustics appearing in the normal-state QPI power spectrum as either temperature or frequency is increased at fixed doping. The smearing is found to be more prominent in the MFL case than in an ordinary Fermi liquid. We also consider the case of a marginal Fermi liquid with a strongly momentum-dependent self-energy which gives rise to a visible nodal-antinodal dichotomy at the normal state, and discuss how the spectra as seen in ARPES and STS differ from both an isotropic metal and a broadened $d$-wave superconductor.
113 - Jan Zaanen 2010
An attempt to shed light on the various belief/idea systems in high Tc superconductivity that are at present popular. This text is in first instance intended to serve both string theorists and junior condensed matter physicists who want to enter this field. It departs from the premise that the often confusing, mutually contradicting portfolio of theories can be best appreciated by viewing it from a historical perspective. The histories of the following subjects are chronicled: the spin fluctuation superglue, Mottness, Resonating Valence Bonds and the gauge theories, pseudo-gap and competing orders, quantum critical metals. The author is well aware that any attempt to write such a history is subjective and comments are welcomed.
We demonstrate that dislocations in the graphene lattice give rise to electron Berry phases equivalent to quantized values {0,1/3,-1/3} in units of the flux quantum, but with an opposite sign for the two valleys. An elementary scale consideration of a graphene Aharonov-Bohm ring equipped with valley filters on both terminals, encircling a dislocation, says that in the regime where the intervalley mean free path is large compared to the intravalley phase coherence length, such that the valley quantum numbers can be regarded as conserved on the relevant scale, the coherent valley-polarized currents sensitive to the topological phases have to traverse the device many times before both valleys contribute, and this is not possible at intermediate temperatures where the latter length becomes of order of the device size, thus leading to an apparent violation of the basic law of linear transport that magnetoconductance is even in the applied flux. We discuss this discrepancy in the Feynman path picture of dephasing, when addressing the transition from quantum to classical dissipative transport. We also investigate this device in the scattering matrix formalism, accounting for the effects of decoherence by the Buttiker dephasing voltage probe type model which conserves the valleys, where the magnetoconductance remains even in the flux, also when different decoherence times are allowed for the individual, time reversal connected, valleys.
We explain, in the first quantized path integral formalism, the mechanism behind the Anderson-Higgs effect for a gas of charged bosons in a background magnetic field, and then use the method to prove the absence of the effect for a gas of fermions. T he exchange statistics are encoded via the inclusion of additional Grassmann coordinates in a manner that leads to a manifest worldline supersymmetry. This extra symmetry is key in demonstrating the absence of the effect for charged fermions.
113 - Frank Kruger , Jan Zaanen 2008
The complete lack of theoretical understanding of the quantum critical states found in the heavy fermion metals and the normal states of the high-T$_c$ superconductors is routed in deep fundamental problem of condensed matter physics: the infamous mi nus signs associated with Fermi-Dirac statistics render the path integral non-probabilistic and do not allow to establish a connection with critical phenomena in classical systems. Using Ceperleys constrained path-integral formalism we demonstrate that the workings of scale invariance and Fermi-Dirac statistics can be reconciled. The latter is self-consistently translated into a geometrical constraint structure. We prove that this nodal hypersurface encodes the scales of the Fermi liquid and turns fractal when the system becomes quantum critical. To illustrate this we calculate nodal surfaces and electron momentum distributions of Feynman backflow wave functions and indeed find that with increasing backflow strength the quasiparticle mass gradually increases, to diverge when the nodal structure becomes fractal. Such a collapse of a Fermi liquid at a critical point has been observed in the heavy-fermion intermetallics in a spectacular fashion.
According to the hypothesis of Penrose and Diosi, quantum state reduction is a manifestation of the incompatibilty of general relativity and the unitary time evolution of quantum physics. Dimensional analysis suggests that Schrodinger cat type states should collapse on measurable time scales when masses and lengths of the order of bacterial scales are involved. We analyze this hypothesis in the context of modern developments in condensed matter and cold atoms physics, aimed at realizing macroscopic quantum states. We first consider micromechanical quantum states, analyzing the capacity of an atomic force microscopy based single spin detector to measure the gravitational state reduction, but we conclude that it seems impossible to suppress environmental decoherence to the required degree. We subsequently discuss split cold atom condensates to find out that these are at present lacking the required mass scale by many orders of magnitude. We then extent Penroses analysis to superpositions of mass current carrying states, and we apply this to the flux quantum bits realized in superconducting circuits. We find that the flux qubits approach the scale where gravitational state reduction should become measurable, but bridging the few remaining orders of magnitude appears to be very difficult with present day technology.
We demonstrate that the strong anomalies in the high frequency LO-phonon spectrum in cuprate superconductors can in principle be explained by the enhanced electronic polarizability associated with the self-organized one dimensionality of metallic str ipes. Contrary to the current interpretation in terms of transversal stripe fluctuations, the anomaly should occur at momenta parallel to the stripes. The doping dependence of the anomaly is naturally explained, and we predict that the phonon line-width and the spread of the anomaly in the transverse momentum decrease with increasing temperature while high resolution measurements should reveal a characteristic substructure to the anomaly.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا