ترغب بنشر مسار تعليمي؟ اضغط هنا

We develop a limit theory of Latin squares, paralleling the recent limit theories of dense graphs and permutations. We introduce a notion of density, an appropriate version of the cut distance, and a space of limit objects - so-called Latinons. Key r esults of our theory are the compactness of the limit space and the equivalence of the topologies induced by the cut distance and the left-convergence. Last, using Keevashs recent results on combinatorial designs, we prove that each Latinon can be approximated by a finite Latin square.
Komlos [Komlos: Tiling Turan Theorems, Combinatorica, 2000] determined the asymptotically optimal minimum-degree condition for covering a given proportion of vertices of a host graph by vertex-disjoint copies of a fixed graph H, thus essentially exte nding the Hajnal-Szemeredi theorem which deals with the case when H is a clique. We give a proof of a graphon version of Komloss theorem. To prove this graphon version, and also to deduce from it the original statement about finite graphs, we use the machinery introduced in [Hladky, Hu, Piguet: Tilings in graphons, arXiv:1606.03113]. We further prove a stability version of Komloss theorem.
We introduce a counterpart to the notion of vertex disjoint tilings by copy of a fixed graph F to the setting of graphons. The case F=K_2 gives the notion of matchings in graphons. We give a transference statement that allows us to switch between the finite and limit notion, and derive several favorable properties, including the LP-duality counterpart to the classical relation between the fractional vertex covers and fractional matchings/tilings, and discuss connections with property testing. As an application of our theory, we determine the asymptotically almost sure F-tiling number of inhomogeneous random graphs mathbb{G}(n,W). As another application, in an accompanying paper [Hladky, Hu, Piguet: Komloss tiling theorem via graphon covers, preprint] we give a proof of a strengthening of a theorem of Komlos [Komlos: Tiling Turan Theorems, Combinatorica, 2000].
In this short note we observe that recent results of Abert and Hubai and of Csikvari and Frenkel about Benjamini--Schramm continuity of the holomorphic moments of the roots of the chromatic polynomial extend to the theory of dense graph sequences. We offer a number of problems and conjectures motivated by this observation.
76 - Jan Hladky , Diana Piguet 2015
We prove a version of the Loebl-Komlos-Sos Conjecture for dense graphs. For each q>0 there exists a number $n_0in mathbb{N}$ such that for any n>n_0 and k>qn the following holds: if G be a graph of order n with at least n/2 vertices of degree at leas t k, then any tree of order k+1 is a subgraph of G.
This is the second of a series of four papers in which we prove the following relaxation of the Loebl-Komlos--Sos Conjecture: For every $alpha>0$ there exists a number $k_0$ such that for every $k>k_0$ every $n$-vertex graph $G$ with at least $(frac1 2+alpha)n$ vertices of degree at least $(1+alpha)k$ contains each tree $T$ of order $k$ as a subgraph. In the first paper of the series, we gave a decomposition of the graph $G$ into several parts of different characteristics; this decomposition might be viewed as an analogue of a regular partition for sparse graphs. In the present paper, we find a combinatorial structure inside this decomposition. In the last two papers, we refine the structure and use it for embedding the tree $T$.
This is the last paper of a series of four papers in which we prove the following relaxation of the Loebl-Komlos-Sos Conjecture: For every $alpha>0$ there exists a number~$k_0$ such that for every $k>k_0$ every $n$-vertex graph $G$ with at least $(fr ac12+alpha)n$ vertices of degree at least $(1+alpha)k$ contains each tree $T$ of order $k$ as a subgraph. In the first two papers of this series, we decomposed the host graph $G$, and found a suitable combinatorial structure inside the decomposition. In the third paper, we refined this structure, and proved that any graph satisfying the conditions of the above approximate version of the Loebl-Komlos-Sos Conjecture contains one of ten specific configurations. In this paper we embed the tree $T$ in each of the ten configurations.
This is the third of a series of four papers in which we prove the following relaxation of the Loebl-Komlos-Sos Conjecture: For every $alpha>0$ there exists a number $k_0$ such that for every $k>k_0$ every $n$-vertex graph $G$ with at least $(frac12+ alpha)n$ vertices of degree at least $(1+alpha)k$ contains each tree $T$ of order $k$ as a subgraph. In the first paper of the series, we gave a decomposition of the graph $G$ into several parts of different characteristics. In the second paper, we found a combinatorial structure inside the decomposition. In this paper, we will give a refinement of this structure. In the forthcoming fourth paper, the refined structure will be used for embedding the tree $T$.
In a series of four papers we prove the following relaxation of the Loebl-Komlos-Sos Conjecture: For every $alpha>0$ there exists a number $k_0$ such that for every $k>k_0$ every $n$-vertex graph $G$ with at least $(frac12+alpha)n$ vertices of degree at least $(1+alpha)k$ contains each tree $T$ of order $k$ as a subgraph. The method to prove our result follows a strategy similar to approaches that employ the Szemeredi regularity lemma: we decompose the graph $G$, find a suitable combinatorial structure inside the decomposition, and then embed the tree $T$ into $G$ using this structure. Since for sparse graphs $G$, the decomposition given by the regularity lemma is not helpful, we use a more general decomposition technique. We show that each graph can be decomposed into vertices of huge degree, regular pairs (in the sense of the regularity lemma), and two other objects each exhibiting certain expansion properties. In this paper, we introduce this novel decomposition technique. In the three follow-up papers, we find a combinatorial structure suitable inside the decomposition, which we then use for embedding the tree.
Loebl, Komlos and Sos conjectured that every $n$-vertex graph $G$ with at least $n/2$ vertices of degree at least $k$ contains each tree $T$ of order $k+1$ as a subgraph. We give a sketch of a proof of the approximate version of this conjecture for l arge values of $k$. For our proof, we use a structural decomposition which can be seen as an analogue of Szemeredis regularity lemma for possibly very sparse graphs. With this tool, each graph can be decomposed into four parts: a set of vertices of huge degree, regular pairs (in the sense of the regularity lemma), and two other objects each exhibiting certain expansion properties. We then exploit the properties of each of the parts of $G$ to embed a given tree $T$. The purpose of this note is to highlight the key steps of our proof. Details can be found in [arXiv:1211.3050].
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا