ترغب بنشر مسار تعليمي؟ اضغط هنا

We report Herschel/PACS photometric observations at 70 {mu}m and 160 {mu}m of LRLL54361 - a suspected binary protostar that exhibits periodic (P=25.34 days) flux variations at shorter wavelengths (3.6 {mu}m and 4.5 {mu}m) thought to be due to pulsed accretion caused by binary motion. The PACS observations show unprecedented flux variation at these far-infrared wavelengths that are well cor- related with the variations at shorter wavelengths. At 70 {mu}m the object increases its flux by a factor of six while at 160{mu}m the change is about a factor of two, consistent with the wavelength dependence seen in the far-infrared spectra. The source is marginally resolved at 70 {mu}m with varying FWHM. Deconvolved images of the sources show elongations exactly matching the outflow cavities traced by the scattered light observations. The spatial variations are anti-correlated with the flux variation indicating that a light echo is responsible for the changes in FWHM. The observed far-infrared flux variability indicates that the disk and en- velope of this source is periodically heated by the accretion pulses of the central source, and suggests that such long wavelength variability in general may provide a reasonable proxy for accretion variations in protostars.
Transitional disks are objects whose inner disk regions have undergone substantial clearing. The Spitzer Space Telescope produced detailed spectral energy distributions (SEDs) of transitional disks that allowed us to infer their radial dust disk stru cture in some detail, revealing the diversity of this class of disks. The growing sample of transitional disks also opened up the possibility of demographic studies, which provided unique insights. There now exist (sub)millimeter and infrared images that confirm the presence of large clearings of dust in transitional disks. In addition, protoplanet candidates have been detected within some of these clearings. Transitional disks are thought to be a strong link to planet formation around young stars and are a key area to study if further progress is to be made on understanding the initial stages of planet formation. Here we provide a review and synthesis of transitional disk observations to date with the aim of providing timely direction to the field, which is about to undergo its next burst of growth as ALMA reaches its full potential. We discuss what we have learned about transitional disks from SEDs, color-color diagrams, and imaging in the (sub)mm and infrared. We then distill the observations into constraints for the main disk clearing mechanisms proposed to date (i.e., photoevaporation, grain growth, and companions) and explore how the expected observational signatures from these mechanisms, particularly planet-induced disk clearing, compare to actual observations. Lastly, we discuss future avenues of inquiry to be pursued with ALMA, JWST, and next generation of ground-based telescopes.
Recent mid-infrared observations of young stellar objects have found significant variations possibly indicative of changes in the structure of the circumstellar disk. Previous models of this variability have been restricted to axisymmetric perturbati ons in the disk. We consider simple models of a non-axisymmetric variation in the inner disk, such as a warp or a spiral wave. We find that the precession of these non-axisymmetric structures produce negligible flux variations but a change in the height of these structures can lead to significant changes in the mid-infrared flux. Applying these models to observations of the young stellar object LRLL 31 suggests that the observed variability could be explained by a warped inner disk with variable scale height. This suggests that some of the variability observed in young stellar objects could be explained by non-axisymmetric disturbances in the inner disk and this variability would be easily observable in future studies.
We present high resolution (R=55,000) optical spectra obtained with MIKE on the 6.5 m Magellan Clay Telescope as well as Spitzer MIPS photometry and IRS low resolution (R~60) spectroscopy of the close (14 AU separation) binary, HD 101088, a member of the ~12 Myr old southern region of the Lower Centaurus Crux (LCC) subgroup of the Scorpius-Centaurus OB association. We find that the primary and/or secondary is accreting from a tenuous circumprimary and/or circumsecondary disk despite the apparent lack of a massive circumbinary disk. We estimate a lower limit to the accretion rate of > 1x10^-9 solar masses per year, which our multiple observation epochs show varies over a timescale of months. The upper limit on the 70 micron flux allows us to place an upper limit on the mass of dust grains smaller than several microns present in a circumbinary disk of 0.16 moon masses. We conclude that the classification of disks into either protoplanetary or debris disks based on fractional infrared luminosity alone may be misleading.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا