ترغب بنشر مسار تعليمي؟ اضغط هنا

Results are presented from recent VLBI observations of Cygnus X-1 during X-ray spectral state changes. Using the EVN in e-VLBI mode and the VLBA with disk recording, we observed the X-ray binary at very high angular resolution and studied changes in the compact jets as the source made transitions from hard X-ray states to softer states. The radio light curves show that these transitions were accompanied by radio flaring events followed by a quenching of the radio emission, as expected from the current paradigm for disc-jet coupling in X-ray binaries. While we see structural changes in the compact jets during these transitions, there was no evidence for the expected ejection of bright, relativistically-moving jet knots. However, we find strong evidence that the jet does not switch off completely in the soft X-ray state of Cygnus X-1, such that a weak, compact jet persists during this phase of radio quenching.
Jets from X-ray binaries are continuously injecting matter and energy into the surrounding interstellar medium (ISM). However, there exist to date relatively few cases where jet-ISM interactions have been directly observed. We review the current exam ples, and go on to present new data on the proposed hotspots of GRS1915+105, finding no concrete evidence for any association between the hotspots and the central source, in agreement with previous findings in the literature. We also present preliminary results on radio and H-alpha searches for jet-ISM interactions around known X-ray binaries, and discuss strategies for future searches.
XTE J1748-288 is a black hole X-ray transient which went into outburst in 1998 June. The X-ray lightcurves showed canonical morphologies, with minor variations on the ``Fast Rise Exponential Decay profile. The radio source, however, reached an unusua lly high flux density of over 600 mJy. This high radio flux was accompanied by an exceptional (>20%) fractional linear polarisation, the variability of which was anti-correlated with the flux density. We use this variability to discuss possible depolarisation mechanisms and to predict the underlying behaviour of the (unresolved) core/jet components.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا