ترغب بنشر مسار تعليمي؟ اضغط هنا

We present results from a survey carried out by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) on a 9 deg^2 field near the South Ecliptic Pole at 250, 350 and 500 {mu}m. The median 1{sigma} depths of the maps are 36.0, 26.4 and 18.4 mJy, respectively. We apply a statistical method to estimate submillimeter galaxy number counts and find that they are in agreement with other measurements made with the same instrument and with the more recent results from Herschel/SPIRE. Thanks to the large field observed, the new measurements give additional constraints on the bright end of the counts. We identify 132, 89 and 61 sources with S/N>4 at 250, 350, 500 {mu}m, respectively and provide a multi-wavelength combined catalog of 232 sources with a significance >4{sigma} in at least one BLAST band. The new BLAST maps and catalogs are available publicly at http://blastexperiment.info.
Measurements of Cosmic Microwave Background (CMB) anisotropy have served as the best experimental probe of the early universe to date. The inflationary paradigm, inspired in part by the extreme isotropy of the CMB, is now a cornerstone in modern cosm ology. Inflation has passed a series of rigorous experimental tests, but we still do not understand the physical mechanism or energy scale behind inflation. A general prediction of inflation and one that can provide certain insights into inflationary physics is a background of primordial gravitational waves. These perturbations leave a distinct signature in the CMB B-modes of polarization. The EPIC (Experimental Probe of Inflationary Cosmology) study team has investigated several CMB polarization mission concepts to carry out a definitive measurement of the inflationary B-mode polarization spectrum. In this report we study a mission with an aperture intermediate between the two missions discussed in our previous report. EPIC-IMs increased aperture allows access to a broader science case than the small EPIC-Low Cost mission. In addition to the search for inflationary gravitational waves, the increase aperture allows us to mine the scale polarization and lensing shear polarization signals down to cosmological limits, so that we extract virtually all the cosmological information available from the CMB. In addition, a modest number of channels operating at higher frequencies allows for an all-sky measurement of polarized Galactic dust, which will provide a rich dataset for Galactic science related to magnetic fields. Using a combination of a large sensitivity focal plane with a new optical design, and an efficient 4K mechanical cooler, EPIC-IM realizes higher sensitivity than EPIC-Comprehensive Science mission.
This is the Phase 1 Report on the Experimental Probe of Inflationary Cosmology (EPIC), a mission concept study for NASAs Einstein Inflation Probe. When we began our study we sought to answer five fundamental implementation questions: 1) can foregroun ds be measured and subtracted to a sufficiently low level?; 2) can systematic errors be controlled?; 3) can we develop optics with sufficiently large throughput, low polarization, and frequency coverage from 30 to 300 GHz?; 4) is there a technical path to realizing the sensitivity and systematic error requirements?; and 5) what are the specific mission architecture parameters, including cost? Detailed answers to these questions are contained in this report. Currently in Phase 2, we are exploring a mission concept targeting a ~2m aperture, in between the two options described in the current report with a small (~30 cm) and large (~4m) missions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا