ترغب بنشر مسار تعليمي؟ اضغط هنا

A recent article by the first two authors together with B Andrews and V-M Wheeler considered the so-called `ideal curve flow, a sixth order curvature flow that seeks to deform closed planar curves to curves with least variation of total geodesic curv ature in the $L^2$ sense. Critical in the analysis there was a length bound on the evolving curves. It is natural to suspect therefore that the length-constrained ideal curve flow should permit a more straightforward analysis, at least in the case of small initial `energy. In this article we show this is indeed the case, with suitable initial data providing a flow that exists for all time and converges smoothly and exponentially to a multiply-covered round circle of the same length and winding number as the initial curve.
We consider the parabolic polyharmonic diffusion and $L^2$-gradient flows of the $m$-th arclength derivative of curvature for regular closed curves evolving with generalised Neumann boundary conditions. In the polyharmonic case, we prove that if the curvature of the initial curve is small in $L^2$, then the evolving curve converges exponentially in the $C^infty$ topology to a straight horizontal line segment. The same behaviour is shown for the $L^2$-gradient flow provided the energy of the initial curve is sufficiently small. In each case the smallness conditions depend only on $m$.
We show that any initial closed curve suitably close to a circle flows under length-constrained curve diffusion to a round circle in infinite time with exponential convergence. We provide an estimate on the total length of time for which such curves are not strictly convex. We further show that there are no closed translating solutions to the flow and that the only closed rotators are circles.
201 - James McCoy , Glen Wheeler 2018
We consider surfaces with boundary satisfying a sixth order nonlinear elliptic partial differential equation corresponding to extremising the $L^2$-norm of the gradient of the mean curvature. We show that such surfaces with small $L^2$-norm of the se cond fundamental form and satisfying so-called `flat boundary conditions are necessarily planar.
In this paper we use a gradient flow to deform closed planar curves to curves with least variation of geodesic curvature in the $L^2$ sense. Given a smooth initial curve we show that the solution to the flow exists for all time and, provided the leng th of the evolving curve remains bounded, smoothly converges to a multiply-covered circle. Moreover, we show that curves in any homotopy class with initially small $L^3lVert k_srVert_2^2$ enjoy a uniform length bound under the flow, yielding the convergence result in these cases.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا