ترغب بنشر مسار تعليمي؟ اضغط هنا

We have considered non-conformal fluid dynamics whose gravity dual is a certain Einstein dilaton system with Liouville type dilaton potential, characterized by an intrinsic parameter $eta$. We have discussed the Hawking-Page transition in this framew ork using hard-wall model and it turns out that the critical temperature of the Hawking-Page transition encapsulates a non-trivial dependence on $eta$. We also obtained transport coefficients such as AC conductivity, shear viscosity and diffusion constant in the hydrodynamic limit, which show non-trivial $eta$ dependent deviations from those in conformal fluids, although the ratio of the shear viscosity to entropy density is found to saturate the universal bound. Some of the retarded correlators are also computed in the high frequency limit for case study.
Inhomogeneous fluid flows which become supersonic are known to produce acoustic analogs of ergoregions and horizons. This leads to Hawking-like radiation of phonons with a temperature essentially given by the gradient of the velocity at the horizon. We find such acoustic dumb holes in charged conformal fluids and use the fluid-gravity correspondence to construct dual gravity solutions. A class of quasinormal modes around these gravitational backgrounds perceive a horizon. Upon quantization, this implies a thermal spectrum for these modes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا