ترغب بنشر مسار تعليمي؟ اضغط هنا

Recent pump-probe experiments performed on graphene in a perpendicular magnetic field have revealed carrier relaxation times ranging from picoseconds to nanoseconds depending on the quality of the sample. To explain this surprising behavior, we propo se a novel symmetry-breaking defect-assisted relaxation channel. This enables scattering of electrons with single out-of-plane phonons, which drastically accelerate the carrier scattering time in low-quality samples. The gained insights provide a strategy for tuning the carrier relaxation time in graphene and related materials by orders of magnitude.
Sub-wavelength graphene structures support localized plasmonic resonances in the terahertz and mid-infrared spectral regimes. The strong field confinement at the resonant frequency is predicted to significantly enhance the light-graphene interaction, which could enable nonlinear optics at low intensity in atomically thin, sub-wavelength devices. To date, the nonlinear response of graphene plasmons and their energy loss dynamics have not been experimentally studied. We measure and theoretically model the terahertz nonlinear response and energy relaxation dynamics of plasmons in graphene nanoribbons. We employ a THz pump-THz probe technique at the plasmon frequency and observe a strong saturation of plasmon absorption followed by a 10 ps relaxation time. The observed nonlinearity is enhanced by two orders of magnitude compared to unpatterned graphene with no plasmon resonance. We further present a thermal model for the nonlinear plasmonic absorption that supports the experimental results.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا