ترغب بنشر مسار تعليمي؟ اضغط هنا

Terahertz Nonlinearity in Graphene Plasmons

190   0   0.0 ( 0 )
 نشر من قبل Martin Mittendorff
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Sub-wavelength graphene structures support localized plasmonic resonances in the terahertz and mid-infrared spectral regimes. The strong field confinement at the resonant frequency is predicted to significantly enhance the light-graphene interaction, which could enable nonlinear optics at low intensity in atomically thin, sub-wavelength devices. To date, the nonlinear response of graphene plasmons and their energy loss dynamics have not been experimentally studied. We measure and theoretically model the terahertz nonlinear response and energy relaxation dynamics of plasmons in graphene nanoribbons. We employ a THz pump-THz probe technique at the plasmon frequency and observe a strong saturation of plasmon absorption followed by a 10 ps relaxation time. The observed nonlinearity is enhanced by two orders of magnitude compared to unpatterned graphene with no plasmon resonance. We further present a thermal model for the nonlinear plasmonic absorption that supports the experimental results.



قيم البحث

اقرأ أيضاً

Transistor structures comprising graphene and sub-wavelength metal gratings hold a great promise for plasmon-enhanced terahertz detection. Despite considerable theoretical effort, little experimental evidence for terahertz plasmons in such structures was found so far. Here, we report an experimental study of plasmons in graphene-insulator-grating structures using Fourier transform spectroscopy in 5-10 THz range. The plasmon resonance is clearly visible above the Drude absorption background even in chemical vapor deposited (CVD) graphene with low carrier mobility $sim 10^3$ cm$^2$/(V s). We argue that plasmon lifetime is weakly sensistive to scattering by grain boundaries and macoscopic defects which limits the mobility of CVD samples. Upon placing the grating in close proximity to graphene, the plasmon field becomes tightly bound below the metal stripes, while the resonant frequency is determined by the stripe width but not by grating period. Our results open the prospects of large-area commercially available graphene for resonant terahertz detectors.
To efficiently integrate cutting-edge terahertz technology into compact devices, the highly confined terahertz plasmons are attracting intensive attentions. Compared to plasmons at visible frequencies in metals, terahertz plasmons, typically in light ly doped semiconductors or graphene, are sensitive to carrier density (n) and thus have an easy tunability, which, however, leads to unstable or imprecise terahertz spectra. By deriving a simplified but universal form of plasmon frequencies, here we reveal a unified mechanism for generating unusual n-independent plasmons (DIPs) in all topological states with different dimensions. Remarkably, we predict that terahertz DIPs can be excited in 2D nodal-line and 1D nodal-point systems, confirmed by the first-principles calculations on almost all existing topological semimetals with diverse lattice symmetries. Besides of n independence, the feature of Fermi-velocity and degeneracy-factor dependences in DIPs can be applied to design topological superlattice and multi-walled carbon nanotube metamaterials for broadband terahertz spectroscopy and quantized terahertz plasmons, respectively. Surprisingly, high spatial confinement and quality factor, also insensitive to n, can be simultaneously achieved in these terahertz DIPs. Our findings pave the way to developing topological plasmonic devices for stable terahertz applications.
We propose a scheme to directionally couple light into graphene plasmons by placing a graphene sheet on a magneto-optical substrate. When a magnetic field is applied parallel to the surface, the graphene plasmon dispersion relation becomes asymmetric in the forward and backward directions. It is possible to achieve unidirectional excitation of graphene plasmons with normally incident illumination by applying a grating to the substrate. The directionality can be actively controlled by electrically gating the graphene, or by varying the magnetic bias. This scheme may have applications in graphene-based opto-electronics and sensing.
Here we present an all-optical plasmon coupling scheme, utilising the intrinsic nonlinear optical response of graphene. We demonstrate coupling of free-space, visible light pulses to the surface plasmons in a planar, un-patterned graphene sheet by us ing nonlinear wave mixing to match both the wavevector and energy of the surface wave. By carefully controlling the phase-matching conditions, we show that one can excite surface plasmons with a defined wavevector and direction across a large frequency range, with an estimated photon efficiency in our experiments approaching $10^{-5}$.
We demonstrate that graphene placed on top of structured substrates offers a novel approach for trapping and guiding surface plasmons. A monolayer graphene with a spatially varying curvature exhibits an effective trapping potential for graphene plasm ons near curved areas such as bumps, humps and wells. We derive the governing equation for describing such localized channel plasmons guided by curved graphene and validate our theory by the first-principle numerical simulations. The proposed confinement mechanism enables plasmon guiding by the regions of maximal curvature, and it offers a versatile platform for manipulating light in planar landscapes. In addition, isolated deformations of graphene such as bumps are shown to support localized surface modes and resonances suggesting a new way to engineer plasmonic metasurfaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا