ترغب بنشر مسار تعليمي؟ اضغط هنا

79 - J.P.Hague , E.M.L.Chung 2009
We discuss the physics of embolic stroke using a minimal model of emboli moving through the cerebral arteries. Our model of the blood flow network consists of a bifurcating tree, into which we introduce particles (emboli) that halt flow on reaching a node of similar size. Flow is weighted away from blocked arteries, inducing an effective interaction between emboli. We justify the form of the flow weighting using a steady flow (Poiseuille) analysis and a more complicated nonlinear analysis. We discuss free flowing and heavily congested limits and examine the transition from free flow to congestion using numerics. The correlation time is found to increase significantly at a critical value, and a finite size scaling is carried out. An order parameter for non-equilibrium critical behavior is identified as the overlap of blockages flow shadows. Our work shows embolic stroke to be a feature of the cerebral blood flow network on the verge of a phase transition.
61 - S.J.Gilks , J.P.Hague 2009
We extend the active walker model to address the formation of paths on gradients, which have been observed to have a zigzag form. Our extension includes a new rule which prohibits direct descent or ascent on steep inclines, simulating aversion to fal ling. Further augmentation of the model stops walkers from changing direction very rapidly as that would likely lead to a fall. The extended model predicts paths with qualitatively similar forms to the observed trails, but only if the terms suppressing sudden direction changes are included. The need to include terms into the model that stop rapid direction change when simulating mountain trails indicates that a similar rule should also be included in the standard active walker model.
We study the Coulomb-Frohlich model on a triangular lattice, looking in particular at states with angular momentum. We examine a simplified model of crab bipolarons with angular momentum by projecting onto the low energy subspace of the Coulomb-Frohl ich model with large phonon frequency. Such a projection is consistent with large long-range electron-phonon coupling and large repulsive Hubbard $U$. Significant differences are found between the band structure of singlet and triplet states: The triplet state (which has a flat band) is found to be significantly heavier than the singlet state (which has mass similar to the polaron). We test whether the heavier triplet states persist to lower electron-phonon coupling using continuous time quantum Monte Carlo (QMC) simulation. The triplet state is both heavier and larger, demonstrating that the heavier mass is due to quantum interference effects on the motion. We also find that retardation effects reduce the differences between singlet and triplet states, since they reintroduce second order terms in the hopping into the inverse effective mass.
66 - J.P.Hague 2009
I present results from an approach that extends the Eliashberg theory by systematic expansion in the vertex function; an essential extension at large phonon frequencies, even for weak coupling. In order to deal with computationally expensive double s ums over momenta, a dynamical cluster approximation (DCA) approach is used to incorporate momentum dependence into the Eliashberg equations. First, I consider the effects of introducing partial momentum dependence on the standard Eliashberg theory using a quasi-local approximation; which I use to demonstrate that it is essential to include corrections beyond the standard theory when investigating d-wave states. Using the extended theory with vertex corrections, I compute electron and phonon spectral functions. A kink in the electronic dispersion is found in the normal state along the major symmetry directions, similar to that found in photo-emission from cuprates. The phonon spectral function shows that for weak coupling $Wlambda < omega_0$, the dispersion for phonons has weak momentum dependence, with consequences for the theory of optical phonon mediated d-wave superconductivity, which is shown to be 2nd order in $lambda$. In particular, examination of the order parameter vs. filling shows that vertex corrections lead to d-wave superconductivity mediated via simple optical phonons. I map out the order parameters in detail, showing that there is significant induced anisotropy in the superconducting pairing in quasi-2D systems.
We consider the effects of single impurities on polarons in three-dimensions (3D) using a continuous time quantum Monte-Carlo algorithm. An exact treatment of the phonon degrees of freedom leads to a very efficient algorithm and we are able to comput e the polaron dynamics on an infinite lattice using an auxiliary weighting scheme. The magnitude of the impurity potential, the electron-phonon coupling and the phonon frequency are varied. We determine the magnitude of the impurity potential required for polaron trapping. For small electron-phonon coupling the number of phonons increases dramatically on trapping. The polaron binding diagram is computed, showing that intermediate-coupling low-phonon-frequency polarons are localized by exceptionally small impurities.
133 - J.P.Hague 2007
I examine electron-phonon mediated superconductivity in the intermediate coupling and phonon frequency regime of the quasi-2D Holstein model. I use an extended Migdal-Eliashberg theory which includes vertex corrections and spatial fluctuations. I fin d a d-wave superconducting state that is unique close to half-filling. The order parameter undergoes a transition to s-wave superconductivity on increasing filling. I explain how the inclusion of both vertex corrections and spatial fluctuations is essential for the prediction of a d-wave order parameter. I then discuss the effects of a large Coulomb pseudopotential on the superconductivity (such as is found in contemporary superconducting materials like the cuprates), which results in the destruction of the s-wave states, while leaving the d-wave states unmodified.
89 - J.P.Hague 2007
I present results from an extended Migdal-Eliashberg theory of electron-phonon interactions and superconductivity. The history of the electron-phonon problem is introduced, and then study of the intermediate parameter regime is justified from the ene rgy scales in the cuprate superconductors. The Holstein model is detailed, and limiting cases are examined to demonstrate the need for an extended theory of superconductivity. Results of the extended approximation are shown, including spectral functions and phase diagrams. These are discussed with reference to Hohenbergs theorem, the Bardeen-Cooper-Schrieffer theory and Coulomb repulsion.
70 - J.P.Hague 2007
I investigate superconducting states in a quasi-2D Holstein model using the dynamical cluster approximation (DCA). The effects of spatial fluctuations (non-local corrections) are examined and approximations neglecting and incorporating lowest-order v ertex corrections are computed. The approximation is expected to be valid for electron-phonon couplings of less than the bandwidth. The phase diagram and superconducting order parameter are calculated. Effects which can only be attributed to theories beyond Migdal--Eliashberg theory are present. In particular, the order parameter shows momentum dependence on the Fermi-surface with a modulated form and s-wave order is suppressed at half-filling. The results are discussed in relation to Hohenbergs theorem and the BCS approximation.
255 - J.P.Hague , N.dAmbrumenil 2007
We investigate the effect of tuning the phonon energy on the correlation effects in models of electron-phonon interactions using DMFT. In the regime where itinerant electrons, instantaneous electron-phonon driven correlations and static distortions c ompete on similar energy scales, we find several interesting results including (1) A crossover from band to Mott behavior in the spectral function, leading to hybrid band/Mott features in the spectral function for phonon frequencies slightly larger than the band width. (2) Since the optical conductivity depends sensitively on the form of the spectral function, we show that such a regime should be observable through the low frequency form of the optical conductivity. (3) The resistivity has a double kondo peak arrangement
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا