ترغب بنشر مسار تعليمي؟ اضغط هنا

Kinks and d-waves from phonons: The intermediate coupling story

67   0   0.0 ( 0 )
 نشر من قبل Jim Hague
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J.P.Hague




اسأل ChatGPT حول البحث

I present results from an approach that extends the Eliashberg theory by systematic expansion in the vertex function; an essential extension at large phonon frequencies, even for weak coupling. In order to deal with computationally expensive double sums over momenta, a dynamical cluster approximation (DCA) approach is used to incorporate momentum dependence into the Eliashberg equations. First, I consider the effects of introducing partial momentum dependence on the standard Eliashberg theory using a quasi-local approximation; which I use to demonstrate that it is essential to include corrections beyond the standard theory when investigating d-wave states. Using the extended theory with vertex corrections, I compute electron and phonon spectral functions. A kink in the electronic dispersion is found in the normal state along the major symmetry directions, similar to that found in photo-emission from cuprates. The phonon spectral function shows that for weak coupling $Wlambda < omega_0$, the dispersion for phonons has weak momentum dependence, with consequences for the theory of optical phonon mediated d-wave superconductivity, which is shown to be 2nd order in $lambda$. In particular, examination of the order parameter vs. filling shows that vertex corrections lead to d-wave superconductivity mediated via simple optical phonons. I map out the order parameters in detail, showing that there is significant induced anisotropy in the superconducting pairing in quasi-2D systems.

قيم البحث

اقرأ أيضاً

We review the intermediate coupling model for treating electronic correlations in the cuprates. Spectral signatures of the intermediate coupling scenario are identified and used to adduce that the cuprates fall in the intermediate rather than the wea k or the strong coupling limits. A robust, `beyond LDA framework for obtaining wide-ranging properties of the cuprates via a GW-approximation based self-consistent self-energy correction for incorporating correlation effects is delineated. In this way, doping and temperature dependent spectra, from the undoped insulator to the overdoped metal, in the normal as well as the superconducting state, with features of both weak and strong coupling can be modeled in a material-specific manner with very few parameters. Efficacy of the model is shown by considering available spectroscopic data on electron and hole doped cuprates from angle-resolved photoemission (ARPES), scanning tunneling microscopy/spectroscopy (STM/STS), neutron scattering, inelastic light scattering, optical and other experiments. Generalizations to treat systems with multiple correlated bands such as the heavy-fermions, the ruthenates, and the actinides are discussed.
We present a combined density-functional-perturbation-theory and inelastic neutron scattering study of the lattice dynamical properties of YNi2B2C. In general, very good agreement was found between theory and experiment for both phonon energies and l ine widths. Our analysis reveals that the strong coupling of certain low energy modes is linked to the presence of large displacements of the light atoms, i.e. B and C, which is unusual in view of the rather low phonon energies. Specific modes exhibiting a strong coupling to the electronic quasiparticles were investigated as a function of temperature. Their energies and line widths showed marked changes on cooling from room temperature to just above the superconducting transition at Tc = 15.2 K. Calculations simulating the effects of temperature allow to model the observed temperature dependence qualitatively.
We demonstrate that many features ascribed to strong correlation effects in various spectroscopies of the cuprates are captured by a calculation of the self-energy incorporating effects of spin and charge fluctuations. The self energy is calculated o ver the full doping range from half filling to the overdoped system. In the normal state, the spectral function reveals four subbands: two widely split incoherent bands representing the remnant of the two Hubbard bands, and two additional coherent, spin- and charge-dressed in-gap bands split by a spin-density wave, which collapses in the overdoped regime. The resulting coherent subbands closely resemble our earlier mean-field results. Here we present an overview of the combined results of our mean-field calculations and the newer extensions into the intermediate coupling regime.
We apply the new-generation ARPES methodology to the most widely studied cuprate superconductor YBCO. Considering the nodal direction, we found noticeable renormalization effects known as kinks both in the quasiparticle dispersion and scattering rate , the bilayer splitting and evidence for strong interband scattering -- all the characteristic features of the nodal quasiparticles detected earlier in BSCCO. The typical energy scale and the doping dependence of the kinks clearly point to their intimate relation with the spin-1 resonance seen in the neutron scattering experiments. Our findings strongly suggest a universality of the electron dynamics in the bilayer superconducting cuprates and a dominating role of the spin-fluctuations in the formation of the quasiparticles along the nodal direction.
159 - H. Anzai , A. Ino , T. Kamo 2010
We have determined the electron-coupling spectrum of superconducting Bi2Sr2CaCu2O8+d from high-resolution angle-resolved photoemission spectra by two deconvolution-free robust methods. As hole concentration decreases, the coupling spectral weight at low energies ~<15 meV shows a twofold and nearly band-independent enhancement, while that around ~65 meV increases moderately, and that in ~>130 meV decreases leading to a crossover of dominant coupling excitation between them. Our results suggest the competition among multiple screening effects, and provide important clues to the source of sufficiently strong low-energy coupling, {lambda}LE ~ 1, in underdoped system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا