ترغب بنشر مسار تعليمي؟ اضغط هنا

The very small accretion disks in ultra-compact X-ray binaries (UCXBs) are special laboratories in which to study disk accretion and outflows. We report on three sets of new (250 ks total) and archival (50 ks) Chandra/HETG observations of the dipping neutron-star X-ray binary 4U 1916$-$053, which has an orbital period of $Psimeq 50$~minutes. We find that the bulk of the absorption in all three spectra originates in a disk atmosphere that is redshifted by $vsimeq 220-290$ $text{km}$ $text{s}^{-1}$, corresponding to the gravitational redshift at radius of $R sim 1200$ $GM/{c}^{2}$. This shift is present in the strongest, most highly ionized lines (Si XIV and Fe XXVI), with a significance of 5$sigma$. Absorption lines observed during dipping events (typically associated with the outermost disk) instead display no velocity shifts and serve as a local standard of rest, suggesting that the redshift is intrinsic to an inner disk atmosphere and not due to radial motion in the galaxy or a kick. In two spectra, there is also evidence of a more strongly redshifted component that would correspond to a disk atmosphere at $R sim 70$ $GM/{c}^{2}$; this component is significant at the 3$sigma$ level. Finally, in one spectrum, we find evidence of disk wind with a blue shift of $v = {-1700}^{+1700}_{-1200}$ $text{km}$ $text{s}^{-1}$. If real, this wind would require magnetic driving.
Studying the reflection of X-rays off the inner edge of the accretion disk in a neutron star low-mass X-ray binary, allows us to investigate the accretion geometry and to constrain the radius of the neutron star. We report on a NuSTAR observation of 4U 1608-52 obtained during a faint outburst in 2014 when the neutron star, which has a known spin frequency of 620 Hz, was accreting at ~1-2% of the Eddington limit. The 3-79 keV continuum emission was dominated by a Gamma~2 power law, with a ~1-2% contribution from a kTbb~0.3-0.6 keV black body component. The high-quality NuSTAR spectrum reveals the hallmarks of disk reflection; a broad iron line peaking near 7~keV and a Compton back-scattering hump around ~20-30 keV. Modeling the disk reflection spectrum points to a binary inclination of i~30-40 degrees and a small `coronal height of h<8.5 GM/c2. Furthermore, our spectral analysis suggests that the inner disk radius extended to Rin~7-10 GM/c2, close to the innermost stable circular obit. This constrains the neutron star radius to R<21 km and the redshift from the stellar surface to z>0.12, for a mass of M=1.5 Msun and a spin parameter of a=0.29.
The bursting pulsar GRO J1744-28 is a Galactic low-mass X-ray binary that distinguishes itself by displaying type-II X-ray bursts: brief, bright flashes of X-ray emission that likely arise from spasmodic accretion. Combined with its coherent 2.1 Hz X -ray pulsations and relatively high estimated magnetic field, it is a particularly interesting source to study the physics of accretion flows around neutron stars. Here we report on Chandra/HETG observations obtained near the peak of its bright 2014 accretion outburst. Spectral analysis suggests the presence of a broad iron emission line centered at E_l ~ 6.7 keV. Fits with a disk reflection model yield an inclination angle of i ~ 52 degrees and an inner disk radius of R_in ~ 85 GM/c^2, which is much further out than typically found for neutron star low-mass X-ray binaries. Assuming that the disk is truncated at the magnetospheric radius of the neutron star, we estimate a magnetic field strength of B ~ (2-6)E10 G. Furthermore, we identify an absorption feature near ~6.85 keV could correspond to blue-shifted Fe xxv and point to a fast disk wind with an outflow velocity of v_out ~ (7.5-8.2)E3 km/s (~0.025c-0.027c). If the covering fraction and filling factor are large, this wind could be energetically important and perhaps account for the fact that the companion star lost significant mass while the magnetic field of the neutron star remained strong.
We observed the Galactic black hole candidate H1743-322 with Suzaku for approximately 32 ksec, while the source was in a low/hard state during its 2008 outburst. We collected and analyzed the data with the HXD/PIN, HXD/GSO and XIS cameras spanning th e energy range from 0.7-200 keV. Fits to the spectra with simple models fail to detect narrow Fe XXV and Fe XXVI absorption lines, with 90% confidence upper limits of 3.5 eV and 2.5 eV on the equivalent width, respectively. These limits are commensurate with those in the very high state, but are well below the equivalent widths of lines detected in the high/soft state, suggesting that disk winds are partially state-dependent. We discuss these results in the context of previous detections of ionized Fe absorption lines in H1743-322 and connections to winds and jets in accreting systems. Additionally, we report the possible detection of disk reflection features, including an Fe K emission line.
70 - J.M. Miller 2002
We have analyzed a Chandra HETGS spectrum of the Galactic black hole Cygnus X-1, obtained at a source flux which is approximately twice that commonly observed in its persistent low-intensity, spectrally-hard state. We find a myriad of absorption line s in the spectrum, including Ly-alpha lines and helium-like resonance lines from Ne, Na, Mg, and Si. We calculate a flux-weighted mean red-shift of ~100 km/s and a flux-weighted mean velocity width of 800 km/s (FWHM) for lines from these elements. We also detect a number of transitions from Fe XVIII-XXIV and Ni XIX-XX in absorption; however, the identification of these lines is less certain and a greater range of shifts and breadth is measured. Our observation occurred at a binary phase of phi = 0.76; the lines observed are consistent with absorption in an ionized region of the supergiant O9.7 Iab companion wind. The spectrum is extremely complicated in that a range of temperatures and densities are implied. Prior Chandra HETGS spectra of Cygnus X-1 were obtained in a similar transition state (at phi = 0.93) and in the low/hard state (at phi= 0.84). Considered together, these spectra provide evidence for a companion wind that is focused as it flows onto the black hole primary in this system.
83 - J.M. Miller 2002
We present an analysis of the first high-resolution spectra measured from an accretion-driven millisecond X-ray pulsar in outburst. We observed XTE J1751-305 with XMM-Newton on 2002 April 7 for approximately 35 ksec. Using a simple absorbed blackbody plus power-law model, we measure an unabsorbed flux of (6.6 +/- 0.1) * 10^(-10) erg/cm^2/s (0.5--10.0 keV). A hard power-law component (Gamma = 1.44 +/- 0.01) contributes 83% of the unabsorbed flux in the 0.5-10.0 keV band, but a blackbody component (kT = 1.05 +/- 0.01 keV) is required. We find no clear evidence for narrow or broad emission or absorption lines in the time-averaged spectra, and the sensitivity of this observation has allowed us to set constraining upper-limits on the strength of important features. The lack of line features is at odds with spectra measured from some other X-ray binaries which share some similarities with XTE J1751-305. We discuss the implications of these findings on the accretion flow geometry in XTE J1751-305.
Broad Fe K-alpha emission lines have recently been reported in a number of Galactic black holes. Such lines are useful accretion flow diagnostics because they may be produced at the inner accretion disk and shaped by relativistic effects, but in gene ral they have only been observed at luminosities of L_X ~ 10^(37-38) erg/s in soft X-rays. The Galactic microquasar V4641 Sgr -- widely known for its 12.2 Crab (1.5-12 keV) outburst in 1999 September -- displayed low-level activity in 1999 March. BeppoSAX observed the source in this state and Fe K-alpha line emission was found (in t Zand et al. 2000). In re-analyzing these data, we find strong evidence that the Fe K-alpha line profile is broadened. For the most likely values of the source distance and black hole mass measured by Orosz et al. (2001), our fits to the total spectrum indicate that the source was observed at a luminosity of L_X = 1.9 (+1.0, -0.8) * 10^(36) erg/s (2-10 keV), or L_X/L_Edd. = 1.8 (+0.9, -0.8) * 10^(-3). Advection-dominated accretion flow (ADAF) models predict a radially-recessed disk in this regime. In contrast, fits to the observed Fe K-alpha emission line profile with a relativistic line model constrain the inner disk to be consistent with the marginally stable circular orbit of a Schwarzschild black hole.
109 - J.J.M. in t Zand 2002
XTE J1908+094 is an X-ray transient that went into outburst in February 2002. After two months it reached a 2-250 keV peak flux of 1 to 2 X 10-8 erg/s/cm2. Circumstantial evidence points to an accreting galactic black hole as the origin of the the X- radiation: pulsations nor thermonuclear flashes were detected that would identify a neutron star and the spectrum was unusually hard for a neutron star at the outburst onset. We report on BeppoSAX and RXTE All Sky Monitor observations of the broad-band spectrum of XTE J1908+094. The spectrum is consistent with a model consisting of a Comptonization component by a ~40 keV plasma (between 2 and 60 keV this component can be approximated by a power law with a photon index of 1.9 to 2.1), a multicolor accretion disk blackbody component with a temperature just below 1 keV and a broad emission line at about 6 keV. The spectrum is heavily absorbed by cold interstellar matter with an equivalent hydrogen column density of 2.5 X 10+22 cm-2, which makes it difficult to study the black body component in detail. The black body component exhibits strong evolution about 6 weeks into the outburst. Two weeks later this is followed by a swift decay of the power law component. The broadness of the 6 keV feature may be due to relativistic broadening or Compton scattering of a narrow Fe-K line.
52 - J.M. Miller 2001
On two occasions, we obtained nearly simultaneous ~ 4 kilosecond snapshot observations of the Galactic black hole and microquasar XTE J1550-564 with Chandra and RXTE near the peak of its May, 2000 outburst. The low-energy sensitivity of Chandra and t he resolution of the High Energy Transmission Grating Spectrometer (HETGS), coupled with the broad energy range and large collecting area of RXTE, have allowed us to place constraints on the outburst accretion flow geometry of this source in the ``intermediate X-ray state. The 0.65-25.0 keV continuum spectra are well-described by relatively hot (kT ~ 0.8 keV) accretion disk and hard (Gamma ~ 2.3) coronal power-law components. Broad, relatively strong Fe K-alpha emission line (EW ~170 eV) and smeared absorption edge components consistent with Fe XXV are strongly required in joint spectral fits. The resolution of the Chandra/HETGS reveals that the broad Fe K-alpha emission lines seen clearly in the individual RXTE spectra are not due to an intrinsically narrow line.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا