ترغب بنشر مسار تعليمي؟ اضغط هنا

80 - J.H. Chen , Z. Y. Wei , E.K. Liu 2015
The crystal structures, martensitic structural transitions and magnetic properties of MnCo1-xFexSi (0 <= x <= 0.50) alloys were studied by differential scanning calorimetry (DSC), x-ray powder diffraction (XRD) and magnetic measurements. In high-temp erature paramagnetic state, the alloys undergo a martensitic structural transitions from the Ni2In-type hexagonal parent phase to the TiNiSi-type orthorhombic martensite. Both the martensitic transition temperature (TM) and Curie temperatures of martensite (T_C^M) decrease with increasing Fe content. The introduced Fe atoms establish ferromagnetic (FM) coupling between Fe-Mn atoms and destroy the double spiral antiferromagnetic (AFM) coupling in MnCoSi compound, resulting in a magnetic change in the martensite phase from a spiral AFM state to a FM state. For the alloys with x = 0.10, 0.15 and 0.20, a metamagnetic transition was observed in between the two magnetic states. A magnetostructural phase diagram of MnCo1-xFexSi (0 <= x <= 0.50) alloys was proposed.
We have measured the impact of atomic hydrogen adsorption on the electronic transport properties of graphene sheets as a function of hydrogen coverage and initial, pre-hydrogenation field-effect mobility. Our results are compatible with hydrogen adso rbates inducing intervalley mixing by exerting a short-range scattering potential. The saturation coverages for different devices are found to be proportional to their initial mobility, indicating that the number of native scatterers is proportional to the saturation coverage of hydrogen. By extrapolating this proportionality, we show that the field-effect mobility can reach $1.5 times 10^4$ cm$^2$/V sec in the absence of the hydrogen-adsorbing sites. This affinity to hydrogen is the signature of the most dominant type of native scatterers in graphene-based field-effect transistors on SiO$_2$.
We argue that the ratio $S_3 =mathrm{^3_Lambda H} / (mathrm{^3He} times frac{Lambda}{p})$ is a good representation of the local correlation between baryon number and strangeness, and therefore is a valuable tool to probe the nature of the dense matte r created in high energy heavy-ion collision: quark gluon plasma or hadron gas. A multiphase transport model (AMPT) plus a dynamical coalescence model is used to elucidate our arguments. We find that AMPT with string melting predicts an increase of $S_3$ with increasing beam energy, and is consistent with experimental data, while AMPT with only hadronic scattering results in a low $S_3$ throughout the energy range from AGS to RHIC, and fails to describe the experimental data.
We employ scanning probe microscopy to reveal atomic structures and nanoscale morphology of graphene-based electronic devices (i.e. a graphene sheet supported by an insulating silicon dioxide substrate) for the first time. Atomic resolution STM image s reveal the presence of a strong spatially dependent perturbation, which breaks the hexagonal lattice symmetry of the graphitic lattice. Structural corrugations of the graphene sheet partially conform to the underlying silicon oxide substrate. These effects are obscured or modified on graphene devices processed with normal lithographic methods, as they are covered with a layer of photoresist residue. We enable our experiments by a novel cleaning process to produce atomically-clean graphene sheets.
We present an analysis of $Omega$, $Xi$, $Lambda$ and $phi$ spectra from Au+Au collisions at $sqrt{s_{NN}}=200$ GeV in terms of distributions of effective constituent quarks at hadronization. Consistency in quark ratios derived from various hadron sp ectra provides clear evidence for hadron formation dynamics as suggested by quark coalescence or recombination models. We argue that the constituent quark distribution reflects properties of the effective partonic degrees of freedom at hadronization. Experimental data indicate that strange quarks have a transverse momentum distribution flatter than that of up/down quarks consistent with hydrodynamic expansion in partonic phase prior to hadronization. After the AMPT model is tuned to reproduce the strange and up/down quark distributions, the model can describe the measured spectra of hyperons and $phi$ mesons very well where hadrons are formed through dynamical coalescence.
212 - J.H. Chen 2008
We present a system size and energy dependence of $phi$ meson production in Cu+Cu and Au+Au collisions at $sqrt{s_{NN}}$=62.4 GeV and 200 GeV measured by the STAR experiment at RHIC. We find that the number of participant scaled $phi$ meson yields in heavy ion collisions over that of p+p collisions are larger than 1 and increase with collision energy. We compare the results with those of open-strange particles and discuss the physics implication.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا