ترغب بنشر مسار تعليمي؟ اضغط هنا

123 - W.B. Sparks 2012
The physical relationship between low-excitation gas filaments at ~10^4 K, seen in optical line emission, and diffuse X-ray emitting coronal gas at ~10^7 K in the centers of many galaxy clusters is not understood. It is unclear whether the ~10^4 K fi laments have cooled and condensed from the ambient hot (~10^7 K) medium or have some other origin such as the infall of cold gas in a merger, or the disturbance of an internal cool reservoir of gas by nuclear activity. Observations of gas at intermediate temperatures (~10^5-10^6 K) can potentially reveal whether the central massive galaxies are gaining cool gas through condensation or losing it through conductive evaporation and hence identify plausible scenarios for transport processes in galaxy cluster gas. Here we present spectroscopic detection of ~10^5 K gas spatially associated with the H-alpha filaments in a central cluster galaxy, M87 in the Virgo Cluster. The measured emission-line fluxes from triply ionized carbon (CIV 1549 A) and singly ionized helium (HeII 1640 A) are consistent with a model in which thermal conduction determines the interaction between hot and cold phases.
Gas at intermediate temperature between the hot X-ray emitting coronal gas in galaxies at the centers of galaxy clusters, and the much cooler optical line emitting filaments, yields information on transport processes and plausible scenarios for the r elationship between X-ray cool cores and other galactic phenomena such as mergers or the onset of an active galactic nucleus. Hitherto, detection of intermediate temperature gas has proven elusive. Here, we present FUV imaging of the low excitation emission filaments of M87 and show strong evidence for the presence of CIV 1549 A emission which arises in gas at temperature ~10^5K co-located with Halpha+[NII] emission from cooler ~10^4K gas. We infer that the hot and cool phases are in thermal communication, and show that quantitatively the emission strength is consistent with thermal conduction, which in turn may account for many of the observed characteristics of cool core galaxy clusters.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا