ترغب بنشر مسار تعليمي؟ اضغط هنا

The distribution of masses for neutron stars is analyzed using the Bayesian statistical inference, evaluating the likelihood of proposed gaussian peaks by using fifty-four measured points obtained in a variety of systems. The results strongly suggest the existence of a bimodal distribution of the masses, with the first peak around $1.37 {M_{odot}}$, and a much wider second peak at $1.73 {M_{odot}}$. The results support earlier views related to the different evolutionary histories of the members for the first two peaks, which produces a natural separation (even if no attempt to label the systems has been made here), and argues against the single-mass scale viewpoint. The bimodal distribution can also accommodate the recent findings of $sim M_{odot}$ masses quite naturally. Finally, we explore the existence of a subgroup around $1.25 {M_{odot}}$, finding weak, if any, evidence for it. This recently claimed low-mass subgroup, possibly related to $O-Mg-Ne$ core collapse events, has a monotonically decreasing likelihood and does not stand out clearly from the rest of the sample.
131 - J.E. Horvath 2010
Anomalous X-ray Pulsars and Soft-Gamma Repeaters groups are magnetar candidates featuring low characteristic ages ($tau = {Pover{2 {dot P}}}$). At least some of them they should still be associated with the remnants of the explosive events in which t hey were born, giving clues to the type of events leading to their birth and the physics behind the apparent high value of the magnetar magnetic fields. To explain the high values of $B$, a self-consistent picture of field growth also suggests that energy injection into the SNR is large and unavoidable, in contrast with the evolution of {it conventional} SNR. This modified dynamics, in turn, has important implications for the proposed associations. We show that this scenario yields low ages for the new candidates CXOU J171405.7-381031/CTB 37B and XMMU J173203.3-344518/G353.6-0.7, and predicted values agree with recently found ${dot P}$, giving support to the overall picture.
102 - J.E. Horvath 2008
Several works in the last few years devoted to measure fundamental probes of contemporary cosmology have suggested the existence of a delocalized dominant component (the dark energy), in addition to the several-decade-old evidence for dark matter oth er than ordinary baryons, both assuming the description of gravity to be correct. Either we are faced to accept the ignorance of at least 95 % of the content of the universe or consider a deep change of the conceptual framework to understand the data. Thus, the situation seems to be completely favorable for a Kuhnian paradigm shift in either particle physics or cosmology. We attempt to offer here a brief discussion of these issues from this particular perspective, arguing that the situation qualifies as a textbook Kuhnian anomaly, and offer a tentative identification of some of the actual elements typically associated with the paradigm shift process in the works in contemporary science.
61 - J.E. Horvath 2008
Primordial Quark Nuggets,remnants of the quark-hadron phase transition, may be hiding most of the baryon number in superdense chunks have been discussed for years always from the theoretical point of view. While they seemed originally fragile at inte rmediate cosmological temperatures, it became increasingly clear that they may survive due to a variety of effects affecting their evaporation (surface and volume) rates. A search of these objects have never been attempted to elucidate their existence. We discuss in this note how to search directly for cosmological fossil nuggets among the small asteroids approaching the Earth. ``Asteroids with a high visible-to-infrared flux ratio, constant lightcurves and devoid of spectral features are signals of an actual possible nugget nature. A viable search of very definite primordial quark nugget features can be conducted as a spinoff of the ongoing/forthcoming NEAs observation programmes.
The accretion of phantom fields by black holes within a thermodynamic context is addressed. For a fluid violating the dominant energy condition, case of a phantom fluid, the Euler and Gibbs relations permit two different possibilities for the entropy and temperature: a situation in which the entropy is negative and the temperature is positive or vice-versa. In the former case, if the generalized second law (GSL) is valid, then the accretion process is not allowed whereas in the latter, there is a critical black hole mass below which the accretion process occurs. In a universe dominated by a phantom field, the critical mass drops quite rapidly with the cosmic expansion and black holes are only slightly affected by accretion. All black holes disappear near the big rip, as suggested by previous investigations, if the GSL is violated.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا