ترغب بنشر مسار تعليمي؟ اضغط هنا

Dark matter, dark energy and modern cosmology: the case for a Kuhnian paradigm shift

103   0   0.0 ( 0 )
 نشر من قبل J. E. Horvath
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J.E. Horvath




اسأل ChatGPT حول البحث

Several works in the last few years devoted to measure fundamental probes of contemporary cosmology have suggested the existence of a delocalized dominant component (the dark energy), in addition to the several-decade-old evidence for dark matter other than ordinary baryons, both assuming the description of gravity to be correct. Either we are faced to accept the ignorance of at least 95 % of the content of the universe or consider a deep change of the conceptual framework to understand the data. Thus, the situation seems to be completely favorable for a Kuhnian paradigm shift in either particle physics or cosmology. We attempt to offer here a brief discussion of these issues from this particular perspective, arguing that the situation qualifies as a textbook Kuhnian anomaly, and offer a tentative identification of some of the actual elements typically associated with the paradigm shift process in the works in contemporary science.

قيم البحث

اقرأ أيضاً

Phenomenological implications of the Mimetic Tensor-Vector-Scalar theory (MiTeVeS) are studied. The theory is an extension of the vector field model of mimetic dark matter, where a scalar field is also incorporated, and it is known to be free from gh ost instability. In the absence of interactions between the scalar field and the vector field, the obtained cosmological solution corresponds to the General theory of Relativity (GR) with a minimally-coupled scalar field. However, including an interaction term between the scalar field and the vector field yields interesting dynamics. There is a shift symmetry for the scalar field with a flat potential, and the conserved Noether current, which is associated with the symmetry, behaves as a dark matter component. Consequently, the solution contains a cosmological constant, dark matter and a stiff matter fluid. Breaking the shift symmetry with a non-flat potential gives a natural interaction between dark energy and dark matter.
Recently, Kallosh and Linde have drawn attention to a new family of superconformal inflationary potentials, subsequently called $alpha$-attractors. The $alpha$-attractor family can interpolate between a large class of inflationary models. It also has an important theoretical underpinning within the framework of supergravity. We demonstrate that the $alpha$-attractors have an even wider appeal since they may describe dark matter and perhaps even dark energy. The dark matter associated with the $alpha$-attractors, which we call $alpha$-dark matter ($alpha$DM), shares many of the attractive features of fuzzy dark matter, with $V(varphi) = frac{1}{2}m^2varphi^2$, while having none of its drawbacks. Like fuzzy dark matter, $alpha$DM can have a large Jeans length which could resolve the cusp-core and substructure problems faced by standard cold dark matter. $alpha$DM also has an appealing tracker property which enables it to converge to the late-time dark matter asymptote, $langle wrangle simeq 0$, from a wide range of initial conditions. It thus avoids the enormous fine-tuning problems faced by the $m^2varphi^2$ potential in describing dark matter.
Dark energy/matter unification is first demonstrated within the framework of a simplified model. Geodetic evolution of a cosmological constant dominated bubble Universe, free of genuine matter, is translated into a specific FRW cosmology whose effe ctively induced dark component highly resembles the cold dark matter ansatz. The realistic extension constitutes a dark soliton which bridges past (radiation and/or matter dominated) and future (cosmological constant dominated) Einstein regimes; its experimental signature is a moderate redshift dependent cold dark matter deficiency function.
We report on precision resonance spectroscopy measurements of quantum states of ultracold neutrons confined above the surface of a horizontal mirror by the gravity potential of the Earth. Resonant transitions between several of the lowest quantum sta tes are observed for the first time. These measurements demonstrate, that Newtons inverse square law of Gravity is understood at micron distances on an energy scale of~$10^{-14}$~eV. At this level of precision we are able to provide constraints on any possible gravity-like interaction. In particular, a dark energy chameleon field is excluded for values of the coupling constant~$beta > 5.8times10^8$ at~95% confidence level~(C.L.), and an attractive (repulsive) dark matter axion-like spin-mass coupling is excluded for the coupling strength $g_sg_p > 3.7times10^{-16}$~($5.3times10^{-16}$)~at a Yukawa length of~$lambda = 20$~{textmu}m~(95% (C.L.).
Non-canonical scalar fields with the Lagrangian ${cal L} = X^alpha - V(phi)$, possess the attractive property that the speed of sound, $c_s^{2} = (2,alpha - 1)^{-1}$, can be exceedingly small for large values of $alpha$. This allows a non-canonical f ield to cluster and behave like warm/cold dark matter on small scales. We demonstrate that simple potentials including $V = V_0coth^2{phi}$ and a Starobinsky-type potential can unify dark matter and dark energy. Cascading dark energy, in which the potential cascades to lower values in a series of discrete steps, can also work as a unified model. In all of these models the kinetic term $X^alpha$ plays the role of dark matter, while the potential term $V(phi)$ plays the role of dark energy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا