ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper we study the feasibility of inferring the magnetic field from polarized multi-line spectra using two methods: The pseudo line approach and The PCA-ZDI approach. We use multi-line techniques, meaning that all the lines of a stellar spect rum contribute to obtain a polarization signature. The use of multiple lines dramatically increases the signal to noise ratio of these polarizations signatures. Using one technique, the pseudo-line approach, we construct the pseudo-line as the mean profile of all the individual lines. The other technique, the PCA-ZDI approach proposed recently by Semel et al. (2006) for the detection of polarized signals, combines Principle Components Analysis (PCA) and the Zeeman Do ppler Imaging technique (ZDI). This new method has a main advantage: the polarized signature is extracted using cross correlations between the stellar spectra nd functions containing the polarization properties of each line. These functions are the principal components of a database of synthetic spectra. The synthesis of the spectra of the database are obtained using the radiative transfer equations in LTE. The profiles built with the PCA-ZDI technique are denominated Multi-Zeeman-Signatures. The construction of the pseudo line as well as the Multi-Zeeman-Signatures is a powerful tool in the study of stellar and solar magnetic fields. The information of the physical parameters that governs the line formation is contained in the final polarized profiles. In particular, using inversion codes, we have shown that the magnetic field vector can be properly inferred with both approaches despite the magnetic field regime.
In order to get a significant Zeeman signature in the polarised spectra of a magnetic star, we usually add the contributions of numerous spectral lines; the ultimate goal is to recover the spectropolarimetric prints of the magnetic field in these lin e additions. Here we want to clarify the meaning of these techniques of line addition; in particular, we try to interpret the meaning of the pseudo-line formed during this process and to find out why and how its Zeeman signature is still meaningful. We create a synthetic case of line addition and apply well tested standard solar methods routinely used in the research on magnetism in our nearest star. The results are convincing and the Zeeman signatures well detected; Solar methods are found to be quite efficient also for stellar observations. We statistically compare line addition with least-squares deconvolution and demonstrate that they both give very similar results as a consequence of the special statistical properties of the weights. The Zeeman signatures are unequivocally detected in this multiline approach. We may anticipate the outcome that magnetic field detection is reliable well beyond the weak-field approximation. Linear polarisation in the spectra of solar type stars can be detected when the spectral resolution is sufficiently high.
In order to get a significant Zeeman signature in the polarised spectra of a magnetic star, we usually add the contributions of numerous spectral lines; the ultimate goal is to recover the spectropolarimetric prints of the magnetic field in these lin e additions. Here we want to clarify the meaning of these techniques of line addition; in particular, we try to interpret the meaning of the pseudo-line formed during this process and to find out why and how its Zeeman signature is still meaningful. We create a synthetic case of lines addition and apply well tested standard solar methods routinely used in the research on magnetism in our nearest star. The results are convincing and the Zeeman signatures well detected; Solar methods are found to be quite efficient also for stellar observations. The Zeeman signatures are unequivocally detected in this multiline approach. We may anticipate the outcome magnetic fields to be reliable well beyond the weak-field approximation. Linear polarisation in the spectra of solar type stars can be detected when the spectral resolution is sufficiently high.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا