ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiline Zeeman signatures as demonstrated through the Pseudo-line

60   0   0.0 ( 0 )
 نشر من قبل Meir Semel
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In order to get a significant Zeeman signature in the polarised spectra of a magnetic star, we usually add the contributions of numerous spectral lines; the ultimate goal is to recover the spectropolarimetric prints of the magnetic field in these line additions. Here we want to clarify the meaning of these techniques of line addition; in particular, we try to interpret the meaning of the pseudo-line formed during this process and to find out why and how its Zeeman signature is still meaningful. We create a synthetic case of lines addition and apply well tested standard solar methods routinely used in the research on magnetism in our nearest star. The results are convincing and the Zeeman signatures well detected; Solar methods are found to be quite efficient also for stellar observations. The Zeeman signatures are unequivocally detected in this multiline approach. We may anticipate the outcome magnetic fields to be reliable well beyond the weak-field approximation. Linear polarisation in the spectra of solar type stars can be detected when the spectral resolution is sufficiently high.

قيم البحث

اقرأ أيضاً

In order to get a significant Zeeman signature in the polarised spectra of a magnetic star, we usually add the contributions of numerous spectral lines; the ultimate goal is to recover the spectropolarimetric prints of the magnetic field in these lin e additions. Here we want to clarify the meaning of these techniques of line addition; in particular, we try to interpret the meaning of the pseudo-line formed during this process and to find out why and how its Zeeman signature is still meaningful. We create a synthetic case of line addition and apply well tested standard solar methods routinely used in the research on magnetism in our nearest star. The results are convincing and the Zeeman signatures well detected; Solar methods are found to be quite efficient also for stellar observations. We statistically compare line addition with least-squares deconvolution and demonstrate that they both give very similar results as a consequence of the special statistical properties of the weights. The Zeeman signatures are unequivocally detected in this multiline approach. We may anticipate the outcome that magnetic field detection is reliable well beyond the weak-field approximation. Linear polarisation in the spectra of solar type stars can be detected when the spectral resolution is sufficiently high.
Line intensity mapping (LIM) is a promising approach to study star formation and the interstellar medium (ISM) in galaxies by measuring the aggregate line emission from the entire galaxy population. In this work, we develop a simple yet physically-mo tivated framework for modeling the line emission as would be observed in LIM experiments, which is done by building on analytic models of the Cosmic Infrared Background that connect total infrared luminosity of galaxies to their host dark matter halos. We present models of the HI 21cm, CO(1-0), [C II] 158$mu$m, and [N II] 122 and 205$mu$m lines consistent with current observational constraints. With four case studies of various combinations of these lines that probe different ISM phases, we demonstrate the potential for reliably extracting physical properties of the ISM, and the evolution of these properties with cosmic time, from auto and cross-correlation analysis of these lines as measured by future LIM experiments.
We present a dual-species effusive source and Zeeman slower designed to produce slow atomic beams of two elements with a large mass difference and with very different oven temperature requirements. We demonstrate this design for the case of $^6$Li an d $^{85}$Rb and achieve MOT loading rates equivalent to that reported in prior work on dual species (Rb+Li) Zeeman slowers operating at the same oven temperatures. Key design choices, including thermally separating the effusive sources and using a segmented coil design to enable computer control of the magnetic field profile, ensure that the apparatus can be easily modified to slow other atomic species. By performing the final slowing using the quadruple magnetic field of the MOT, we are able to shorten our Zeeman slower length making for a more compact system without compromising performance. We outline the construction and analyze the emission properties of our effusive sources. We also verify the performance of the source and slower, and we observe sequential loading rates of $8 times 10^8$ atoms/s for a Rb oven temperature of $120,^{circ}$C and $1.5 times 10^8$ atoms/s for a Li reservoir at $450,^{circ}$C, corresponding to reservoir lifetimes for continuous operation of 10 and 4 years respectively.
112 - Jose Miguel No 2015
Mono-$X$ signatures are a powerful collider probe of the nature of dark matter. We show that mono-Higgs and mono-$Z$ may be key signatures of pseudo-scalar portal interactions between dark matter and the SM. We demonstrate this using a simple renorma lizable version of the portal, with a Two-Higgs-Doublet-Model as electroweak symmetry breaking sector. Mono-$Z$ and mono-Higgs signatures in this scenario are of resonant type, which constitutes a novel type of dark matter signature at LHC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا