ترغب بنشر مسار تعليمي؟ اضغط هنا

204 - A. Muller , J.-U. Pott , A. Merand 2014
Context: A turbulent atmosphere causes atmospheric piston variations leading to rapid changes in the optical path difference of an interferometer, which causes correlated flux losses. This leads to decreased sensitivity and accuracy in the correlated flux measurement. Aims: To stabilize the N band interferometric signal in MIDI (MID-infrared Interferometric instrument), we use an external fringe tracker working in K band, the so-called FSU-A (fringe sensor unit) of the PRIMA (Phase-Referenced Imaging and Micro-arcsecond Astrometry) facility at VLTI. We present measurements obtained using the newly commissioned and publicly offered MIDI+FSU-A mode. A first characterization of the fringe-tracking performance and resulting gains in the N band are presented. In addition, we demonstrate the possibility of using the FSU-A to measure visibilities in the K band. Methods: We analyzed FSU-A fringe track data of 43 individual observations covering different baselines and object K band magnitudes with respect to the fringe-tracking performance. The N band group delay and phase delay values could be predicted by computing the relative change in the differential water vapor column density from FSU-A data. Visibility measurements in the K band were carried out using a scanning mode of the FSU-A. Results: Using the FSU-A K band group delay and phase delay measurements, we were able to predict the corresponding N band values with high accuracy with residuals of less than 1 micrometer. This allows the coherent integration of the MIDI fringes of faint or resolved N band targets, respectively. With that method we could decrease the detection limit of correlated fluxes of MIDI down to 0.5 Jy (vs. 5 Jy without FSU-A) and 0.05 Jy (vs. 0.2 Jy without FSU-A) using the ATs and UTs, respectively. The K band visibilities could be measured with a precision down to ~2%.
We report on the successful science verification phase of a new observing mode at the Keck interferometer, which provides a line-spread function width and sampling of 150km/s at K-band, at a current limiting magnitude of K~7mag with spatial resolutio n of lam/2B ~2.7mas and a measured differential phase stability of unprecedented precision (3mrad at K=5mag, which represents 3uas on sky or a centroiding precision of 10^-3). The scientific potential of this mode is demonstrated by the presented observations of the circumstellar disk of the evolved Be-star 48Lib. In addition to indirect methods such as multi-wavelength spectroscopy and polaritmetry, the here described spectro-interferometric astrometry provides a new tool to directly constrain the radial density structure in the disk. We resolve for the first time several Pfund emission lines, in addition to BrGam, in a single interferometric spectrum, and with adequate spatial and spectral resolution and precision to analyze the radial disk structure in 48Lib. The data suggest that the continuum and Pf-emission originates in significantly more compact regions, inside of the BrGam emission zone. Thus, spectro-interferometric astrometry opens the opportunity to directly connect the different observed line profiles of BrGam and Pfund in the total and correlated flux to different disk radii. The gravitational potential of a rotationally flattened Be star is expected to induce a one-armed density perturbation in the circumstellar disk. Such a slowly rotating disk oscillation has been used to explain the well known periodic V/R spectral profile variability in these stars, as well as the observed V/R cycle phase shifts between different disk emission lines. The differential line properties and linear constraints set by our data lend support to the existence of a radius-dependent disk density perturbation.
Investigating the environment of the massive black hole SgrA* at the center of the Galaxy requires the highest angular resolution available to avoid source confusion and to study the physical properties of the individual objects. GCIRS7 has been used as wavefront and astrometric reference. Our studies investigate, for the first time, its properties at 2&10um using VLTI/AMBER and MIDI. We aim at analyzing the suitability of IRS7 as an IF-phase-reference for the upcoming generation of dual-field facilities at optical interferometers. We observed with (R~30) and 50m (proj.) baseline, resulting in 9 and 45mas resolution for NIR and MIR, resp. The first K-band fringe detection of a GC star suggests that IRS7 could be marginally resolved at 2um, which would imply that the photosphere of the supergiant is enshrouded by a molecular and dusty envelope. At 10um, IRS7 is strongly resolved with a visibility of approximately 0.2. The MIR is dominated by moderately warm (200 K), extended dust, mostly distributed outside of a radius of about 120 AU (15 mas) around the star. A deep 9.8-silicate absorption in excess of the usual extinction law with respect to the NIR extinction has been found. This confirms recent findings of a relatively enhanced, interstellar 9.8-silicate absorption with respect to the NIR extinction towards another star in the central arcsec, suggesting an unusual dust composition in that region. Our VLTI observations show that interferometric NIR phase-referencing experiments with mas resolution using IRS7 as phase-reference appear to be feasible, but more such studies are required to definitely characterize the close environment around this star. We demonstrate that interferometry is required to resolve the innermost environment of stars at the Galactic center.
GCIRS3 is the most prominent MIR source in the central pc of the Galaxy. NIR spectroscopy failed to solve the enigma of its nature. The properties of extreme individual objects of the central stellar cluster contribute to our knowledge of star and du st formation close to a supermassive black hole. We initiated an interferometric experiment to understand IRS3 and investigate its properties as spectroscopic and interferometric reference star at 10um. VISIR imaging separates a compact source from diffuse, surrounding emission. The VLTI/MIDI instrument was used to measure visibilities at 10mas resolution of that compact 10um source, still unresolved by a single VLT. Photometry data were added to enable simple SED- and full radiative transfer-models of the data. The luminosity and size estimates show that IRS3 is probably a cool carbon star enshrouded by a complex dust distribution. Dust temperatures were derived. The coinciding interpretation of multiple datasets confirm dust emission at several spatial scales. The IF data resolve the innermost area of dust formation. Despite observed deep silicate absorption towards IRS3 we favor a carbon rich chemistry of the circumstellar dust shell. The silicate absorption most probably takes place in the outer diffuse dust, which is mostly ignored by MIDI measurements. This indicates physically and chemically distinct conditions of the local dust, changing with the distance to IRS3. We have demonstrated that optical long baseline interferometry at infrared wavelengths is an indispensable tool to investigate sources at the Galactic Center. Our findings suggest further studies of the composition of interstellar dust and the shape of the 10um silicate feature at this outstanding region.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا