ترغب بنشر مسار تعليمي؟ اضغط هنا

Context. Towards the multimessenger era, the scientific demand for simultaneous observations with different facilities is continuously increasing. The main challenges of coordinating observations is the determination of common visibility and respecti ve scheduling constraints to find common free slots. While all this information is publicly available via the respective observatory web pages, it is cumbersome to find this information from a large diversity of web interfaces and web tables. Aims. Coordinated observations have been planned already, but their number will continue to increase, and the larger complexity requires much better use of automatic routines. Methods. Automatic tools are not able to obtain visibility and planning information from web interfaces. Standard interfaces between observatories need to be developed to use automatic tools. We present two Virtual Observatory (VO) protocols ObjVisSAP and ObsLocTAP that work with a URL-based query approach with standardized query parameters and standardized output. Clients can pull the required information directly from the respective observatories and compute overlapping, unplanned, visibility intervals. Many other use cases are possible. Results. A prototype service has been implemented by the INTEGRAL mission and a very simple client script queries visibility intervals for given coordinates within the next 30 days. An observer can quickly see whether a source is observable within the near future. Other missions are on their way to implement the services. Conclusions. Once the major observatories have implemented the services and powerful tools are available that rely on getting visibility and planning observations via these protocols, we expect many other, also ground-based, observatories to follow. We are developing documentation to support observatories with the implementation.
423 - M. Orio , J.-U. Ness , A. Dobrotka 2018
Nova SMC 2016 has been the most luminous nova known in the direction of the Magellanic Clouds. It turned into a very luminous supersoft X-ray source between day 16 and 28 after the optical maximum. We observed it with Chandra, the HRC-S camera and th e Low Energy Transmission Grating (LETG) on 2016 November and 2017 January (days 39 and 88 after optical maximum), and with XMM-Newton on 2016 December (day 75). We detected the compact white dwarf (WD) spectrum as a luminous supersoft X-ray continuum with deep absorption features of carbon, nitrogen, magnesium, calcium, probably argon and sulfur on day 39, and oxygen, nitrogen and carbon on days 75 and 88. The spectral features attributed to the WD atmosphere are all blue-shifted, by about 1800 km/s on day 39 and up to 2100 km/s in the following observations. Spectral lines attributed to low ionization potential transitions in the interstellar medium are also observed. Assuming the distance of the Small Magellanic Cloud, the bolometric luminosity exceeded Eddington level for at least three months. A preliminary analysis with atmospheric models indicates effective temperature around 700,000 K on day 39, peaking at the later dates in the 850,000-900,000 K range, as expected for a 1.25 m(sol) WD. We suggest a possible classification as an oxygen-neon WD, but more precise modeling is needed to accurately determine the abundances. The X-ray light curves show large, aperiodic ux variability, not associated with spectral variability. We detected red noise, but did not find periodic or quasi-periodic modulations.
We present a study of the C K-edge using high-resolution LETGS Chandra spectra of four novae during their super-soft-source (SSS) phase. We identified absorption lines due to C~ii K$alpha$, C~iii K$alpha$ and C~ iii K$beta$ resonances. We used these astronomical observations to perform a benchmarking of the atomic data, which involves wavelength shifts of the resonances and photoionization cross-sections. We used improved atomic data to estimate the C~ii and C~iii column densities. The absence of physical shifts for the absorption lines, the consistence of the column densities between multiple observations and the high temperature required for the SSS nova atmosphere modeling support our conclusion about an ISM origin of the respective absorption lines. Assuming a collisional ionization equilibrium plasma the maximum temperature derived from the ratio of C~ii/C~iii column densities of the absorbers correspond to $T_{max}< 3.05times10^{4}$ K.
99 - A. Dobrotka , J.-U. Ness 2017
All X-ray light curves of nova V4743 Sgr (2002), taken during and after outburst, contain a 0.75 mHz periodic signal that can most plausibly be interpreted as being excited by the rotation of the white dwarf in an intermediate polar system. This inte rpretation faces the challenge of an apparent multi-frequency nature of this signal in the light curves taken days 180 and 196 after outburst. We show that the multi-sine fit method, based on a superposition of two sine functions, yields two inherently indistinguishable solutions, i.e. the presence of two close frequencies, or a single signal with constant frequency but variable modulation amplitude. Using a power spectrum time map, we show that on day 180, a reduction of the modulation amplitude of the signal coincides with a substantial overall flux decline while on day 196, the signal was only present during the first half of the observation. Supported by simulations, we show that such variations in amplitude can lead to false beating that manifests itself as a multiple signal if computing a periodogram over the full light curve. Therefore, the previously proposed double frequency nature of both light curves was probably an artefact while we consider a single signal with frequency equal to the white dwarf rotation as more plausible.
We analysed Kepler data of two similar dwarf novae V344 Lyr and V1504 Cyg in order to study optical fast stochastic variability (flickering) by searching for characteristic break frequencies in their power density spectra. Two different stages of act ivity were analysed separately, i.e. regular outbursts and quiescence. Both systems show similar behaviour during both activity stages. The quiescent power density spectra show a dominant low break frequency which is also present during outburst with a more or less stable value in V344 Lyr while it is slightly higher in V1504 Cyg. The origin of this variability is probably the whole accretion disc. Both outburst power density spectra show additional high frequency components which we interpret as generated by the rebuilt inner disc that was truncated during quiescence. Moreover, V344 Lyr shows the typical linear rms-flux relation which is strongly deformed by a possible negative superhump variability.
58 - A. Dobrotka , J.-U. Ness 2015
An optical light curve of SU UMa type dwarf nova V1504 Cyg taken by Kepler was analysed in order to study fast optical variability (flickering). We calculated power density spectra and rms-flux relations for two different stages of activity, i.e. qui escence and regular outbursts. A multicomponent power density spectrum with two break frequencies was found during both activity stages. The rms-flux relation is obvious only in the quiescent data. However, while the collection of all outburst data do not show this variability, every individual outburst does show it in the majority of cases keeping the rms value approximately in the same interval. Furthermore, the same analysis was performed for light curve subsamples taken from the beginning, middle and the end of the supercycle both for quiescence and regular outbursts. Every light curve subsample shows the same multicomponent power density spectrum. The stability of the break frequencies over the supercycle can be confirmed for all frequencies except for the high break frequency during outburst, which shows variability, but with rather low confidence. Finally, the low break frequency can be associated with the geometrically thin disc or its inner edge, while the high break frequency can originate from the inner geometrically thick hot disc. Furthermore, with our statistical method to simulate flickering light curves, we show that the outburst flickering light curve of V1504 Cyg needs an additional constant flux level to explain the observed rms-flux behaviour. Therefore, during the outbursts another non-turbulent radiation source should be present.
Transient short-period <100s oscillations have been found in the X-ray light curves of three novae during their SSS phase and in one persistent SSS. We pursue an observational approach to determine possible driving mechanisms and relations to fundame ntal system parameters such as the white dwarf mass. We performed a systematic search for short-period oscillations in all available XMM-Newton and Chandra X-ray light curves of persistent SSS and novae during their SSS phase. To study time evolution, we divided each light curve into short time segments and computed power spectra. We then constructed dynamic power spectra from which we identified transient periodic signals even when only present for a short time. From all time segments of each system, we computed fractions of time when periodic signals were detected. In addition to the previously known systems with short-period oscillations, RS Oph (35s), KT Eri (35s), V339 Del (54s), and Cal 83 (67s), we found one additional system, LMC 2009a (33s), and also confirm the 35s period from Chandra data of KT Eri. The amplitudes of oscillations are of order <15% of the respective count rates and vary without any clear dependence on the X-ray count rate. The fractions of the time when the respective periods were detected at 2-sigma significance (duty cycle) are 11.3%, 38.8%, 16.9%, 49.2%, and 18.7% for LMC 2009a, RS Oph, KT Eri, V339 Del, and Cal 83, respectively. The respective highest duty cycles found in a single observation are 38.1%, 74.5%, 61.4%, 67.8%, and 61.8%.
Super-Soft-Source (SSS) X-ray spectra are blackbody-like spectra with effective temperatures ~3-7x10^5 K and luminosities of 10^{35-38} erg/s. SSS grating spectra display atmospheric absorption lines. Radiation transport atmosphere models can be used to derive physical parameters, but more sophisticated models are required. We bypass the complications of spectral models and concentrate on the data in a comparative, qualitative study. We inspect all available X-ray grating SSS spectra to determine systematic, model-independent trends. We use comparative plots of spectra of different systems to find common and different features. The results are interpreted in the context of system parameters obtained from the literature. We find two distinct types of SSS spectra which we name SSa and SSe. Their main observational characteristics are either clearly visible absorption lines or emission lines, respectively, while both types contain atmospheric continuum emission. SSe may be obscured SSa systems, which is supported by similarities between SSe and SSa with obscured and unobscured AGN, respectively. Further, we find all known or suspected high-inclination systems to emit permanently in an SSe state. Some sources are found to transition between SSa and SSe states, becoming SSe when fainter. SSS spectra are subject to various occultation processes. In Cal 87, the accretion disc blocks the central hot source when viewed edge on. In novae, the accretion disc may have been destroyed during the initial explosion but could have reformed by the time of the SSS phase. In addition, clumpy ejecta may lead to temporary obscuration events. The emission lines originate from reprocessed emission in the accretion disc, its wind or further out in clumpy ejecta while Thomson scattering allows continuum emission to be visible also during total obscuration of the central hot source.
Two XMM observations of the fast classical nova V2491Cyg were carried out on days 39.93 and 49.62 after discovery, during the supersoft source (SSS) phase, yielding simultaneous X-ray and UV light curves and high-resolution X-ray spectra. The first X -ray light curve is highly variable with periodic oscillations (37.2 min) after an extended dip of factor of three lasting ~3 hours. The cause of the dip is currently unexplained and could have the same origin as similar events in V4743Sgr and RSOph, as it occurred on the same time scale. The 37-min period is not present during the dip and also not in the second observation. The UV light curves are variable but contain no dips and no period. High-resolution X-ray spectra are presented for 4 intervals of different intensity. All spectra are atmospheric continua with absorption lines and absorption edges. Interstellar lines of OI and NI are seen at their rest wavelengths, and a large number of high-ionization absorption lines are found at blue shifts indicating an expansion velocity of 3000-3400 km/s, which does not change significantly during the epochs of observation. Comparisons with the slower nova V4743Sgr and the symbiotic recurrent nova RSOph are presented. The SSS spectrum of V4743Sgr is much softer with broader and more complex photospheric absorption lines. Meanwhile, the absorption lines in RSOph are as narrow as in V2491Cyg, but they are less blue shifted. A remarkable similarity in the continua of V2491Cyg and RSOph is found. The only differences are smaller line shifts and additional emission lines in RSOph that are related to a dense stellar wind from the evolved companion. Three unidentified absorption lines are present in the X-ray spectra of all three novae, with rest wavelengths 26.05AA, 29.45AA, and 30.0AA. No satisfactory spectral model is currently available for the soft X-ray spectra of novae in outburst.
We conducted an X-ray spectroscopic study of the classical nova V2491 Cygni using our target-of-opportunity observation data with the Suzaku and XMM-Newton satellites as well as archived data with the Swift satellite. Medium-resolution (R~10-50) spec tra were obtained using the X-ray CCD spectrometers at several post-nova epochs on days 9, 29, 40, 50, and 60-150 in addition to a pre-nova interval between days -322 and -100 all relative to the time when the classical nova was spotted. We found remarkable changes in the time series of the spectra: (a) In the pre-nova phase and on day 9, the 6.7 keV emission line from Fe XXV was significantly detected. (b) On day 29, no such emission line was found. (c) On day 40, the 6.7 keV emission line emerged again. (d) On days 50 and 60-150, three emission lines at 6.4, 6.7, and 7.0 keV respectively from quasi-neutral Fe, Fe XXV, and Fe XXVI were found. Statistically significant changes of the Fe K line intensities were confirmed between day 29 and 50. Based on these phenomena, we conclude that (1) the post-nova evolution can be divided into two different phases, (2) ejecta is responsible for the X-ray emission in the earlier phase, while rekindled accretion is for the later phase, and (3) the accretion process is considered to be reestablished as early as day 50 when the quasi-neutral Fe emission line emerged, which is a common signature of accretion from magnetic cataclysmic variables.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا