ترغب بنشر مسار تعليمي؟ اضغط هنا

Carbon X-ray absorption in the local ISM: fingerprints in X-ray Novae spectra

83   0   0.0 ( 0 )
 نشر من قبل Efrain Gatuzz efra
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a study of the C K-edge using high-resolution LETGS Chandra spectra of four novae during their super-soft-source (SSS) phase. We identified absorption lines due to C~ii K$alpha$, C~iii K$alpha$ and C~ iii K$beta$ resonances. We used these astronomical observations to perform a benchmarking of the atomic data, which involves wavelength shifts of the resonances and photoionization cross-sections. We used improved atomic data to estimate the C~ii and C~iii column densities. The absence of physical shifts for the absorption lines, the consistence of the column densities between multiple observations and the high temperature required for the SSS nova atmosphere modeling support our conclusion about an ISM origin of the respective absorption lines. Assuming a collisional ionization equilibrium plasma the maximum temperature derived from the ratio of C~ii/C~iii column densities of the absorbers correspond to $T_{max}< 3.05times10^{4}$ K.



قيم البحث

اقرأ أيضاً

102 - M. Tanga , P. Schady , A. Gatto 2016
Two-thirds of long duration gamma-ray bursts (GRBs) show soft X-ray absorption in excess of the Milky Way. The column densities of metals inferred from UV and optical spectra differ from those derived from soft X-ray spectra, at times by an order of magnitude, with the latter being higher. The origin of the soft X-ray absorption excess observed in GRB X-ray afterglow spectra remains a heavily debated issue, which has resulted in numerous investigations on the effect of hot material both internal and external to the GRB host galaxy on our X-ray afterglow observations. Nevertheless, all models proposed so far have either only been able to account for a subset of our observations (i.e. at z > 2), or they have required fairly extreme conditions to be present within the absorbing material. In this paper, we investigate the absorption of the GRB afterglow by a collisionally ionised and turbulent interstellar medium (ISM). We find that a dense (3 per cubic centimeters) collisionally ionised ISM could produce UV/optical and soft X-ray absorbing column densities that differ by a factor of 10, however the UV/optical and soft X-ray absorbing column densities for such sightlines and are 2-3 orders of magnitude lower in comparison to the GRB afterglow spectra. For those GRBs with a larger soft X-ray excess of up to an order of magnitude, the contribution in absorption from a turbulent ISM as considered here would ease the required conditions of additional absorbing components, such as the GRB circumburst medium and intergalactic medium.
We present a detailed analysis of the gaseous component of the Si K edge using high-resolution Chandra spectra of low-mass X-ray binaries. We fit the spectra with amodified version of the ISMabs model, including new photoabsorption cross sectionscomp uted for all Si ionic species. We estimate column densities for Si i, Si ii, Si iii, Si xii and Si xiii, which trace the warm, intermediate temperature and hot phases of the Galactic interstellar medium. We find that the ionic fractions of the first two phases are similar. This may be due to the physical state of the plasma determined by the temperature or to the presence of absorber material in the close vicinity of the sources. Our findings highlight the need for accurate modeling of the gaseous component before attempting to address the solid component.
We present X-ray observations of novae V2491 Cyg and KT Eri about 9 years post-outburst, of the dwarf nova and post-nova candidate EY Cyg, and of a VY Scl variable. The first three objects were observed with XMM-Newton, KT Eri also with the Chandra A CIS-S camera, V794 Aql with the Chandra ACIS-S camera and High Energy Transmission Gratings. The two recent novae, similar in outburst amplitude and light curve, appear very different at quiescence. Assuming half of the gravitational energy is irradiated in X-rays, V2491 Cyg is accreting at $dot{m}=1.4times10^{-9}-10^{-8}M_odot/yr$, while for KT Eri, $dot{m}<2times10^{-10}M_odot/yr$. V2491 Cyg shows signatures of a magnetized WD, specifically of an intermediate polar. A periodicity of ~39 minutes, detected in outburst, was still measured and is likely due to WD rotation. EY Cyg is accreting at $dot{m}sim1.8times10^{-11}M_odot/yr$, one magnitude lower than KT Eri, consistently with its U Gem outburst behavior and its quiescent UV flux. The X-rays are modulated with the orbital period, despite the systems low inclination, probably due to the X-ray flux of the secondary. A period of ~81 minutes is also detected, suggesting that it may also be an intermediate polar. V794 Aql had low X-ray luminosity during an optically high state, about the same level as in a recent optically low state. Thus, we find no clear correlation between optical and X-ray luminosity: the accretion rate seems unstable and variable. The very hard X-ray spectrum indicates a massive WD.
Prediction of the soft X-ray absorption along lines of sight through our Galaxy is crucial for understanding the spectra of extragalactic sources, but requires a good estimate of the foreground column density of photoelectric absorbing species. Assum ing uniform elemental abundances this reduces to having a good estimate of the total hydrogen column density, N(Htot)=N(HI)+2N(H2). The atomic component, N(HI), is reliably provided using the mapped 21 cm radio emission but estimating the molecular hydrogen column density, N(H2), expected for any particular direction, is difficult. The X-ray afterglows of GRBs are ideal sources to probe X-ray absorption in our Galaxy because they are extragalactic, numerous, bright, have simple spectra and occur randomly across the entire sky. We describe an empirical method, utilizing 493 afterglows detected by the Swift XRT, to determine N(Htot) through the Milky Way which provides an improved estimate of the X-ray absorption in our Galaxy and thereby leads to more reliable measurements of the intrinsic X-ray absorption and, potentially, other spectral parameters, for extragalactic X-ray sources. We derive a simple function, dependent on the product of the atomic hydrogen column density, N(HI), and dust extinction, E(B-V), which describes the variation of the molecular hydrogen column density, N(H2), of our Galaxy, over the sky. Using the resulting N(Htot) we show that the dust-to-hydrogen ratio is correlated with the carbon monoxide emission and use this ratio to estimate the fraction of material which forms interstellar dust grains. Our resulting recipe represents a significant revision in Galactic absorption compared to previous standard methods, particularly at low Galactic latitudes.
193 - M. Hernanz , G. Sala (2 2009
Detection of X-rays from classical novae, both in outburst and post-outburst, provides unique and crucial information about the explosion mechanism. Soft X-rays reveal the hot white dwarf photosphere, whenever hydrogen (H) nuclear burning is still on and expanding envelope is transparent enough, whereas harder X-rays give information about the ejecta and/or the accretion flow in the reborn cataclysmic variable. The duration of the supersoft X-ray emission phase is related to the turn-off of the classical nova, i.e., of the H-burning on top of the white dwarf core. A review of X-ray observations is presented, with a special emphasis on the implications for the duration of post-outburst steady H-burning and its theoretical explanation. The particular case of recurrent novae (both the standard objects and the recently discovered ones) is also reviewed, in terms of theoretical feasibility of short recurrence periods, as well as regarding implications for scenarios of type Ia supernovae.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا