ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigated the electronic properties of epitaxially stabilized perovskite SrIrO3 and demonstrated the effective strain-control on its electronic structure. Comprehensive transport measurements showed that the strong spin-orbit coupling renders a novel semimetallic phase for the J_eff=1/2 electrons rather than an ordinary correlated metal, elucidating the nontrivial mechanism underlying the dimensionality-controlled metal-insulator transition in iridates. The electron-hole symmetry of this correlated semimetal was found to exhibit drastic variation when subject to bi-axial strain. Under compressive strain, substantial electron-hole asymmetry is observed in contrast to the tensile side, where the electron and hole effective masses are comparable, illustrating the susceptivity of the J_eff=1/2 to structural distortion. Tensile strain also shrinks the Fermi surface, indicative of an increasing degree of correlation which is consistent with optical measurements. These results pave a pathway to investigate and manipulate the electronic states in spin-orbit-coupled correlated oxides, and lay the foundation for constructing 5d transition metal heterostructures.
In addition to unconventional high-Tc superconductivity, the iron arsenides exhibit strong magnetoelastic coupling and a notable electronic anisotropy within the a-b plane. We relate these properties by studying underdoped Ba(Fe{1-x}Co{x})2As2 by x-r ay diffraction in pulsed magnetic fields up to 27.5 Tesla. We exploit magnetic detwinning effects to demonstrate anisotropy in the in-plane susceptibility, which develops at the structural phase transition despite the absence of magnetic order. The degree of detwinning increases smoothly with decreasing temperature, and a single- domain condition is realized over a range of field and temperature. At low temperatures we observe an activated behavior, with a large hysteretic remnant effect. Detwinning was not observed within the superconducting phase for accessible magnetic fields.
97 - M. Yi , D. H. Lu , J.-H. Chu 2010
Nematicity, defined as broken rotational symmetry, has recently been observed in competing phases proximate to the superconducting phase in the cuprate high temperature superconductors. Similarly, the new iron-based high temperature superconductors e xhibit a tetragonal to orthorhombic structural transition (i.e. a broken C4 symmetry) that either precedes or is coincident with a collinear spin density wave (SDW) transition in undoped parent compounds, and superconductivity arises when both transitions are suppressed via doping. Evidence for strong in-plane anisotropy in the SDW state in this family of compounds has been reported by neutron scattering, scanning tunneling microscopy, and transport measurements. Here we present an angle resolved photoemission spectroscopy study of detwinned single crystals of a representative family of electron-doped iron-arsenide superconductors, Ba(Fe1-xCox)2As2 in the underdoped region. The crystals were detwinned via application of in-plane uniaxial stress, enabling measurements of single domain electronic structure in the orthorhombic state. At low temperatures, our results clearly demonstrate an in-plane electronic anisotropy characterized by a large energy splitting of two orthogonal bands with dominant dxz and dyz character, which is consistent with anisotropy observed by other probes. For compositions x>0, for which the structural transition (TS) precedes the magnetic transition (TSDW), an anisotropic splitting is observed to develop above TSDW, indicating that it is specifically associated with TS. For unstressed crystals, the band splitting is observed close to TS, whereas for stressed crystals the splitting is observed to considerably higher temperatures, revealing the presence of a surprisingly large in-plane nematic susceptibility in the electronic structure.
Detailed study of the LDOS associated with the surface-state-band near a step-edge of the strong topological-insulator Bi2Te3, reveal a one-dimensional bound state that runs parallel to the stepedge and is bound to it at some characteristic distance. This bound state is clearly observed in the bulk gap region, while it becomes entangled with the oscillations of the warped surface band at high energy, and with the valence band states near the Dirac point. Using the full effective Hamiltonian proposed by Zhang et al., we obtain a closed formula for this bound state that fits the data and provide further insight into the general topological properties of the electronic structure of the surface band near strong structural defects.
90 - F. Pfuner , P. Lerch , J.-H. Chu 2010
We provide optical reflectivity data collected over a broad spectral range and as a function of temperature on the ErTe$_3$ and HoTe$_3$ materials, which undergo two consecutive charge-density-wave (CDW) phase transitions at $T_{CDW1}$= 265 and 288 K and at $T_{CDW2}$= 157 and 110 K, respectively. We observe the temperature dependence of both the Drude component, due to the itinerant charge carriers, and the single-particle peak, ascribed to the charge-density-wave gap excitation. The CDW gap progressively opens while the metallic component gets narrow with decreasing temperature. An important fraction of the whole Fermi surface seems to be affected by the CDW phase transitions. It turns out that the temperature and the previously investigated pressure dependence of the most relevant CDW parameters share several common features and behaviors. Particularly, the order parameter of the CDW state is in general agreement with the predictions of the BCS theory.
The three-dimensional Fermi surface morphology of superconducting BaFe_2(As_0.37}P_0.63)_2 with T_c=9K, is determined using the de Haas-van Alphen effect (dHvA). The inner electron pocket has a similar area and k_z interplane warping to the observed hole pocket, revealing that the Fermi surfaces are geometrically well nested in the (pi,pi) direction. These results are in stark contrast to the Fermiology of the non-superconducting phosphides (x=1), and therefore suggests an important role for nesting in pnictide superconductivity.
Scanning tunneling spectroscopy studies on high-quality Bi$_2$Te$_3$ crystals exhibit perfect correspondence to ARPES data, hence enabling identification of different regimes measured in the local density of states (LDOS). Oscillations of LDOS near a step are analyzed. Within the main part of the surface band oscillations are strongly damped, supporting the hypothesis of topological protection. At higher energies, as the surface band becomes concave, oscillations appear which disperse with a particular wave-vector that may result from an unconventional hexagonal warping term.
We investigate the surface state of Bi$_2$Te$_3$ using angle resolved photoemission spectroscopy (ARPES) and transport measurements. By scanning over the entire Brillouin zone (BZ), we demonstrate that the surface state consists of a single non-degen erate Dirac cone centered at the $Gamma$ point. Furthermore, with appropriate hole (Sn) doping to counteract intrinsic n-type doping from vacancy and anti-site defects, the Fermi level can be tuned to intersect only the surface states, indicating a full energy gap for the bulk states, consistent with a carrier sign change near this doping in transport properties. Our experimental results establish for the first time that Bi$_2$Te$_3$ is a three dimensional topological insulator with a single Dirac cone on the surface, as predicted by a recent theory.
We report on a thorough optical investigation of BaFe$_2$As$_2$ over a broad spectral range and as a function of temperature, focusing our attention on its spin-density-wave (SDW) phase transition at $T_{SDW}=135$ K. While BaFe$_2$As$_2$ remains meta llic at all temperatures, we observe a depletion in the far infrared energy interval of the optical conductivity below $T_{SDW}$, ascribed to the formation of a pseudogap-like feature in the excitation spectrum. This is accompanied by the narrowing of the Drude term consistent with the $dc$ transport results and suggestive of suppression of scattering channels in the SDW state. About 20% of the spectral weight in the far infrared energy interval is affected by the SDW phase transition.
The ferroelectric degenerate semiconductor Sn$_{1-delta}$Te exhibits superconductivity with critical temperatures, $T_c$, of up to 0.3 K for hole densities of order 10$^{21}$ cm$^{-3}$. When doped on the tin site with greater than $x_c$ $= 1.7(3)%$ i ndium atoms, however, superconductivity is observed up to 2 K, though the carrier density does not change significantly. We present specific heat data showing that a stronger pairing interaction is present for $x > x_c$ than for $x < x_c$. By examining the effect of In dopant atoms on both $T_c$ and the temperature of the ferroelectric structural phase transition, $T_{SPT}$, we show that phonon modes related to this transition are not responsible for this $T_c$ enhancement, and discuss a plausible candidate based on the unique properties of the indium impurities.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا