ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhanced superconducting pairing interaction in indium-doped tin telluride

147   0   0.0 ( 0 )
 نشر من قبل Ian Fisher
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ferroelectric degenerate semiconductor Sn$_{1-delta}$Te exhibits superconductivity with critical temperatures, $T_c$, of up to 0.3 K for hole densities of order 10$^{21}$ cm$^{-3}$. When doped on the tin site with greater than $x_c$ $= 1.7(3)%$ indium atoms, however, superconductivity is observed up to 2 K, though the carrier density does not change significantly. We present specific heat data showing that a stronger pairing interaction is present for $x > x_c$ than for $x < x_c$. By examining the effect of In dopant atoms on both $T_c$ and the temperature of the ferroelectric structural phase transition, $T_{SPT}$, we show that phonon modes related to this transition are not responsible for this $T_c$ enhancement, and discuss a plausible candidate based on the unique properties of the indium impurities.



قيم البحث

اقرأ أيضاً

Results of resistivity, Hall effect, magnetoresistance, susceptibility and heat capacity measurements are presented for single crystals of indium-doped tin telluride with compositions Sn$_{.988-x}$In$_x$Te where $0 leq x leq 8.4 %$, along with micros tructural analysis based on transmission electron microscopy. For small indium concentrations, $x leq 0.9 %$ the material does not superconduct above 0.3 K, and the transport properties are consistent with simple metallic behavior. For $x geq 2.7 %$ the material exhibits anomalous low temperature scattering and for $x geq 6.1 %$ bulk superconductivity is observed with critical temperatures close to 2 K. Intermediate indium concentrations $2.7% leq x leq 3.8%$ do not exhibit bulk superconductivity above 0.7 K. Susceptibility data indicate the absence of magnetic impurities, while magnetoresistance data are inconsistent with localization effects, leading to the conclusion that indium-doped SnTe is a candidate charge Kondo system, similar to thallium-doped PbTe.
88 - Z. Li , E. Z. Xu , Y. Losovyj 2017
The recent discovery of excellent thermoelectric properties and topological surface states in SnTe-based compounds has attracted extensive attention in various research areas. Indium doped SnTe is of particular interest because, depending on the dopi ng level, it can either generate resonant states in the bulk valence band leading to enhanced thermoelectric properties, or induce superconductivity that coexists with topological states. Here we report on the vapor deposition of In-doped SnTe nanowires and the study of their surface oxidation and thermoelectric properties. The nanowire growth is assisted by Au catalysts, and their morphologies vary as a function of substrate position and temperature. Transmission electron microscopy characterization reveals the formation of amorphous surface in single crystalline nanowires. X-ray photoelectron spectroscopy studies suggest that the nanowire surface is composed of In2O3, SnO2, Te and TeO2 which can be readily removed by argon ion sputtering. Exposure of the cleaned nanowires to atmosphere yields rapid oxidation of the surface within only one minute. Characterizations of electrical conductivity {sigma}, thermopower S, and thermal conductivity k{appa} were performed on the same In-doped nanowire which shows suppressed {sigma} and k{appa} but enhanced S yielding an improved thermoelectric figure of merit ZT than the undoped SnTe.
Here we report the effect of structural and superconductivity properties on Ru doped CuIr2Te4 telluride chalcogenide. XRD results suggest that the CuIr2-xRuxTe4 maintain the disordered trigonal structure with space group P3m1 (No. 164) for x less tha n 0.3. The lattice constants, a and c, both decrease with increasing Ru content. Temperature-dependent resistivity, magnetic susceptibility and specific-heat measurements are performed to characterize the superconducting properties systematically. Our results suggest that the optimal doping level for superconductivity in CuIr2-xRuxTe4 is x = 0.05, where Tc is 2.79 K with the Sommerfeld constant gamma of 11.52 mJ mol-1 K-2 and the specific-heat anomaly at the superconducting transition, is approximately 1.51, which is higher than the BCS value of 1.43, indicating CuIr1.95Ru0.05Te4 is a strongly electron-phonon coupled superconductor. The values of lower critical filed and upper critical field calculated from isothermal magnetization and magneto-transport measurements are 0.98 KOe and 2.47 KOe respectively, signifying that the compound is clearly a type-II superconductor. Finally, a dome-like shape superconducting Tcs vs. x content phase diagram is established, where the charge density wave disappears at x = 0.03 while superconducting transition temperature (Tc) rises until it reaches its peak at x = 0.05, then, with decreasing when x reaches 0.3. This feature of the competition between CDW and the superconductivity could be caused by tuning the Fermi surface and density of states with Ru chemical doping.
462 - H. Miao , P. Richard , Y. Tanaka 2011
The momentum distribution of the energy gap opening at the Fermi level of superconductors is a direct fingerprint of the pairing mechanism. While the phase diagram of the iron-based superconductors promotes antiferromagnetic fluctuations as a natural candidate for electron pairing, the precise origin of the interaction is highly debated. We used angle-resolved photoemission spectroscopy to reveal directly the momentum distribution of the superconducting gap in FeTe1-xSex, which has the simplest structure of all iron-based superconductors. We found isotropic superconducting gaps on all Fermi surfaces whose sizes can be fitted by a single gap function derived from a strong coupling approach, strongly suggesting local antiferromagnetic exchange interactions as the pairing origin.
116 - Bo Li , Lihua Pan , Yuan-Yen Tai 2015
The pairing symmetry is examined in highly electron-doped Ba(Fe$_{1-x}$Co$_x$As)$_2$ and A$_y$Fe$_2$Se$_2$ (with A=K, Cs) compounds, with similar crystallographic and electronic band structures. Starting from a phenomenological two-orbital model, we consider nearest-neighbor and next-nearest-neighbor intraorbital pairing interactions on the Fe square lattice. In this model, we find a unified description of the evolution from $s_pm$-wave pairing ($2.0 < n lesssim 2.4$) to $d$-wave pairing ($2.4 lesssim n lesssim 2.5$) as a function of electron filling. In the crossover region a novel time-reversal symmetry breaking state with $s_pm+id$ pairing symmetry emerges. This minimal model offers an overall picture of the evolution of superconductivity with electron doping for both $s_pm$-wave [Ba(Fe$_{1-x}$Co$_x$As)$_2$] and $d$-wave [A$_y$Fe$_2$Se$_2$] pairing, as long as the dopants only play the role of a charge reservoir. However, the situation is more complicated for Ba(Fe$_{1-x}$Co$_x$As)$_2$. A real-space study further shows that when the impurity scattering effects of Co dopants are taken into account, the superconductivity is completely suppressed for $n > 2.4$. This preempts any observation of $d$-wave pairing in this compound, in contrast to A$_y$Fe$_2$Se$_2$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا