ترغب بنشر مسار تعليمي؟ اضغط هنا

Taken together and viewed holistically, recent theory, low temperature (T) transport, photoelectron spectroscopy and quantum oscillation experiments have built a very strong case that the paradigmatic mixed valence insulator SmB6 is currently unique as a three-dimensional strongly correlated topological insulator (TI). As such, its many-body T-dependent bulk gap brings an extra richness to the physics beyond that of the weakly correlated TI materials. How will the robust, symmetry-protected TI surface states evolve as the gap closes with increasing T? For SmB6 exploiting this opportunity first requires resolution of other important gap-related issues, its origin, its magnitude, its T-dependence and its role in bulk transport. In this paper we report detailed T-dependent angle resolved photoemission spectroscopy (ARPES) measurements that answer all these questions in a unified way.
Temperature dependent photoemission spectroscopy in Li0.9Mo6O17 contributes to evidence for one dimensional physics that is unusually robust. Three generic characteristics of the Luttinger liquid are observed, power law behavior of the k-integrated s pectral function down to temperatures just above the superconducting transition, k-resolved lineshapes that show holon and spinon features, and quantum critical (QC) scaling in the lineshapes. Departures of the lineshapes and the scaling from expectations in the Tomonaga Luttinger model can be partially described by a phenomenological momentum broadening that is presented and discussed. The possibility that some form of 1d physics obtains even down to the superconducting transition temperature is assessed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا