ﻻ يوجد ملخص باللغة العربية
Temperature dependent photoemission spectroscopy in Li0.9Mo6O17 contributes to evidence for one dimensional physics that is unusually robust. Three generic characteristics of the Luttinger liquid are observed, power law behavior of the k-integrated spectral function down to temperatures just above the superconducting transition, k-resolved lineshapes that show holon and spinon features, and quantum critical (QC) scaling in the lineshapes. Departures of the lineshapes and the scaling from expectations in the Tomonaga Luttinger model can be partially described by a phenomenological momentum broadening that is presented and discussed. The possibility that some form of 1d physics obtains even down to the superconducting transition temperature is assessed.
We investigate the role of inter-orbital fluctuations in the low energy physics of a quasi-1D material - lithium molybdenum purple bronze (LMO). It is an exceptional material that may provide us a long sought realization of a Tomonaga-Luttinger liqui
At ambient pressure, lithium molybdenum purple bronze (Li0.9Mo6O17) is a quasi-one dimensional solid in which the anisotropic crystal structure and the linear dispersion of the underlying bands produced by electronic correlations possibly bring about
Molybdenum purple bronze Li$_{0.9}$Mo$_{6}$O$_{17}$ is an exceptional material known to exhibit one dimensional (1D) properties for energies down to a few meV. This fact seems to be well established both in experiments and in band structure theory. W
The energy gap for electronic excitations is one of the most important characteristics of the superconducting state, as it directly refects the pairing of electrons. In the copper-oxide high temperature superconductors (HTSCs), a strongly anisotropic
We report the observation and systematic investigation of the space charge effect and mirror charge effect in photoemission spectroscopy. When pulsed light is incident on a sample, the photoemitted electrons experience energy redistribution after esc