ترغب بنشر مسار تعليمي؟ اضغط هنا

We present constraints on the stellar initial mass function (IMF) in two ultra-faint dwarf (UFD) galaxies, Hercules and Leo IV, based on deep HST/ACS imaging. The Hercules and Leo IV galaxies are extremely low luminosity (M_V = -6.2, -5.5), metal-poo r (<[Fe/H]>= -2.4, -2.5) systems that have old stellar populations (> 11 Gyr). Because they have long relaxation times, we can directly measure the low-mass stellar IMF by counting stars below the main-sequence turnoff without correcting for dynamical evolution. Over the stellar mass range probed by our data, 0.52 - 0.77 Msun, the IMF is best fit by a power-law slope of alpha = 1.2^{+0.4}_{-0.5} for Hercules and alpha = 1.3 +/- 0.8 for Leo IV. For Hercules, the IMF slope is more shallow than a Salpeter IMF (alpha=2.35) at the 5.8-sigma level, and a Kroupa IMF (alpha=2.3 above 0.5 Msun) at 5.4-sigma level. We simultaneously fit for the binary fraction, finding f_binary = 0.47^{+0.16}_{-0.14} for Hercules, and 0.47^{+0.37}_{-0.17} for Leo IV. The UFD binary fractions are consistent with that inferred for Milky Way stars in the same mass range, despite very different metallicities. In contrast, the IMF slopes in the UFDs are shallower than other galactic environments. In the mass range 0.5 - 0.8 Msun, we see a trend across the handful of galaxies with directly measured IMFs such that the power-law slopes become shallower (more bottom-light) with decreasing galactic velocity dispersion and metallicity. This trend is qualitatively consistent with results in elliptical galaxies inferred via indirect methods and is direct evidence for IMF variations with galactic environment.
We have serendipitously detected a strong O VI-bearing Lyman limit system at z_abs = 0.3558 toward the QSO J1009+0713 (z_em = 0.456) in our survey of low-redshift galaxy halos with the Hubble Space Telescopes Cosmic Origins Spectrograph. Its rest-fra me equivalent width of W_r = 835 +/- 49 mA is the highest for an intervening absorber yet detected in any low-redshift QSO sightline, with absorption spanning 400 km s^-1 in its rest frame. HST/WFC3 images of the galaxy field show that the absorber is associated with two galaxies lying at 14 and 46 kpc from the QSO line of sight. The bulk of the absorbing gas traced by H I resides in two strong, blended component groups that possess a total logN(HI) = 18 - 18.8. The ion ratios and column densities of C, N, O, Mg, Si, S, and Fe, except the O VI, can be accommodated into a simple photoionization model in which diffuse, low-metallicity halo gas is exposed to a photoionizing field from stars in the nearby galaxies that propagates into the halo at 10% efficiency. We constrain the metallicity firmly within the range 0.1 - 1 Zsun, and photoionization modeling indirectly indicates a subsolar metallicity of 0.05 - 0.5 Zsun. The appearance of strong O VI and nine Mg II components and our review of similar systems in the literature support the interface picture of high-velocity O VI: the total strength of the O VI shows a positive correlation with the number of detected components in the low-ionization gas, however the total O VI column densities still far exceed the values expected from interface models for the number of detected clouds.
We report two detections of deuterated molecular hydrogen (HD) in QSO absorption-line systems at $z > 2$. Toward J2123-0500, we find $N$(HD) $= 13.84 pm 0.2$ for a sub-DLA with metallicity $simeq 0.5Z_{odot}$ and $N$(H$_2$) = $17.64 pm 0.15$ at $z = 2.0594$. Toward FJ0812+32, we find $N$(HD) $= 15.38 pm 0.3$ for a solar-metallicity DLA with $N$(H$_2$) = $19.88 pm 0.2$ at $z = 2.6265$. These systems have ratios of HD to H$_2$ above that observed in dense clouds within the Milky Way disk and apparently consistent with a simple conversion from the cosmological ratio of D/H. These ratios are not readily explained by any available model of HD chemistry and there are no obvious trends with metallicity or molecular content. Taken together, these two systems and the two published $z > 2$ HD-bearing DLAs indicate that HD is either less effectively dissociated or more efficiently produced in high-redshift interstellar gas, even at low molecular fraction and/or solar metallicity. It is puzzling that such diverse systems should show such consistent HD/H$_2$ ratios. Without clear knowledge of all the aspects of HD chemistry that may help determine the ratio HD/H$_2$, we conclude that these systems are potentially more revealing of gas chemistry than of D/H itself and that it is premature to use such systems to constrain D/H at high-redshift.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا