ترغب بنشر مسار تعليمي؟ اضغط هنا

This work presents results of near-band gap magnetooptical studies on (Zn,Mn)O epitaxial layers. We observe excitonic transitions in reflectivity and photoluminescence, that shift towards higher energies when the Mn concentration increases and split nonlinearly under the magnetic field. Excitonic shifts are determined by the s,p-d exchange coupling to magnetic ions, by the electron-hole s-p exchange, and the spin-orbit interactions. A quantitative description of the magnetoreflectivity findings indicates that the free excitons A and B are associated with the Gamma_7 and Gamma_9 valence bands, respectively, the order reversed as compared to wurtzite GaN. Furthermore, our results show that the magnitude of the giant exciton splittings, specific to dilute magnetic semiconductors, is unusual: the magnetoreflectivity data is described by an effective exchange energy N_0(beta-alpha)=+0.2+/-0.1 eV, what points to small and positive N_0 beta. It is shown that both the increase of the gap with x and the small positive value of the exchange energy N_0 beta corroborate recent theory describing the exchange splitting of the valence band in a non-perturbative way, suitable for the case of a strong p-d hybridization.
The origin of the emission within the optical mode of a coupled quantum dot-micropillar system is investigated. Time-resolved photoluminescence is performed on a large number of deterministically coupled devices in a wide range of temperature and det uning. The emission within the cavity mode is found to exhibit the same dynamics as the spectrally closest quantum dot state. Our observations indicate that fast dephasing of the quantum dot state is responsible for the emission within the cavity mode. An explanation for recent photon correlation measurements reported on similar systems is proposed.
Using far field optical lithography, a single quantum dot is positioned within a pillar microcavity with a 50 nm accuracy. The lithography is performed in-situ at 10 K while measuring the quantum dot emission. Deterministic spectral and spatial match ing of the cavity-dot system is achieved in a single step process and evidenced by the observation of strong Purcell effect. Deterministic coupling of two quantum dots to the same optical mode is achieved, a milestone for quantum computing.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا