ترغب بنشر مسار تعليمي؟ اضغط هنا

Context. Some circumstellar-interacting (CSI) supernovae (SNe) are produced by the explosions of massive stars that have lost mass shortly before the SN explosion. There is evidence that the precursors of some SNe IIn were luminous blue variable (LBV ) stars. For a small number of CSI SNe, outbursts have been observed before the SN explosion. Eruptive events of massive stars are named as SN impostors (SN IMs) and whether they herald a forthcoming SN or not is still unclear. The large variety of observational properties of CSI SNe suggests the existence of other progenitors, such as red supergiant (RSG) stars with superwinds. Furthermore, the role of metallicity in the mass loss of CSI SN progenitors is still largely unexplored. Aims. Our goal is to gain insight on the nature of the progenitor stars of CSI SNe by studying their environments, in particular the metallicity at their locations. Methods. We obtain metallicity measurements at the location of 60 transients (including SNe IIn, SNe Ibn, and SN IMs), via emission-line diagnostic on optical spectra obtained at the Nordic Optical Telescope and through public archives. Metallicity values from the literature complement our sample. We compare the metallicity distributions among the different CSI SN subtypes and to those of other core-collapse SN types. We also search for possible correlations between metallicity and CSI SN observational properties. Results. We find that SN IMs tend to occur in environments with lower metallicity than those of SNe IIn. Among SNe IIn, SN IIn-L(1998S-like) SNe show higher metallicities, similar to those of SNe IIL/P, whereas long-lasting SNe IIn (1988Z-like) show lower metallicities, similar to those of SN IMs. The metallicity distribution of SNe IIn can be reproduced by combining the metallicity distributions of SN IMs (that may be produced by major outbursts of massive stars like LBVs) and SNe IIP (produced by RSGs). The same applies to the distributions of the Normalized Cumulative Rank (NCR) values, which quantifies the SN association to H II regions. For SNe IIn, we find larger mass-loss rates and higher CSM velocities at higher metallicities. The luminosity increment in the optical bands during SN IM outbursts tend to be larger at higher metallicity, whereas the SN IM quiescent optical luminosities tend to be lower. Conclusions. The difference in metallicity between SNe IIn and SN IMs suggests that LBVs are only one of the progenitor channels for SNe IIn, with 1988Z-like and 1998S-like SNe possibly arising from LBVs and RSGs, respectively. Finally, even though linedriven winds likely do not primarily drive the late mass-loss of CSI SN progenitors, metallicity has some impact on the observational properties of these transients. Key words. supernovae: general - stars: evolution - galaxies: abundances
The origin of the blue supergiant (BSG) progenitor of Supernova (SN) 1987A has long been debated, along with the role that its sub-solar metallicity played. We now have a sample of 1987A-like SNe that arise from the core collapse (CC) of BSGs. The me tallicity of the explosion sites of the known BSG SNe is investigated, as well as their association to star-forming regions. Both indirect and direct metallicity measurements of 13 BSG SN host galaxies are presented, and compared to those of other CC SN types. Indirect measurements are based on the known luminosity-metallicity relation and on published metallicity gradients of spiral galaxies. To provide direct estimates based on strong line diagnostics, we obtained spectra of each BSG SN host both at the SN explosion site and at the positions of other HII regions. Continuum-subtracted Ha images allowed us to quantify the association between BSG SNe and star-forming regions. BSG SNe explode either in low-luminosity galaxies or at large distances from the nuclei of luminous hosts. Therefore, their indirectly measured metallicities are typically lower than those of SNe IIP and Ibc. This is confirmed by the direct estimates, which show slightly sub-solar values (12+log(O/H)=8.3-8.4 dex), similar to that of the Large Magellanic Cloud (LMC), where SN 1987A exploded. However, two SNe (1998A and 2004em) were found at near solar metallicity. SNe IIb have a metallicity distribution similar to that of BSG SNe. Finally, the association to star-forming regions is similar among BSG SNe, SNe IIP and IIn. Our results suggest that LMC metal abundances play a role in the formation of some 1987A-like SNe. This would naturally fit in a single star scenario for the progenitors. However, the existence of two events at nearly solar metallicity suggests that also other channels, e.g. binarity, contribute to produce BSG SNe.
We present optical and near-infrared (NIR) photometry and spectroscopy of the Type IIb supernova (SN) 2011dh for the first 100 days. We complement our extensive dataset with SWIFT ultra-violet (UV) and Spitzer mid-infrared (MIR) data to build a UV to MIR bolometric lightcurve using both photometric and spectroscopic data. Hydrodynamical modelling of the SN based on this bolometric lightcurve have been presented in Bersten (2012). We find that the absorption minimum for the hydrogen lines is never seen below ~11000 km/s but approaches this value as the lines get weaker. This suggests that the interface between the helium core and hydrogen rich envelope is located near this velocity in agreement with the Bersten et al. (2012) He4R270 ejecta model. Spectral modelling of the hydrogen lines using this ejecta model supports the conclusion and we find a hydrogen mass of 0.01-0.04 solar masses to be consistent with the observed spectral evolution. We estimate that the photosphere reaches the helium core at 5-7 days whereas the helium lines appear between ~10 and ~15 days, close to the photosphere and then move outward in velocity until ~40 days. This suggests that increasing non-thermal excitation due to decreasing optical depth for the gamma-rays is driving the early evolution of these lines. We also provide and discuss pre- and post-explosion observations of the SN site which shows a reduction by 75 percent in flux at the position of the yellow supergiant coincident with SN 2011dh. The B, V and r band decline rates of 0.0073, 0.0090 and 0.0053 mag/day respectively are consistent with the remaining flux being emitted by the SN. Hence we find that the star was indeed the progenitor of SN 2011dh as previously suggested by Maund et al. (2011) and which is also consistent with the results from the hydrodynamical modelling.
75 - F. Bufano 2011
During the last ten years, observations of long-duration gamma-ray bursts brought to the conclusion that at least a fraction of them is associated with bright supernovae of type Ib/c. In this talk, after a short review on the previously observed GRB- SN connection cases, we present the recent case of GRB 100316/SN 2010bh. In particular, during the observational campaign of SN 2010bh, a pivotal role was played by VLT/X-shooter, sampling with unique high quality data the spectral energy distribution of the early evolution phases from the UV to the K band.
Aims: To gain better insight on the physics of stripped-envelope core-collapse supernovae through studying their environments. Methods: We obtained low-resolution optical spectroscopy with the New Technology Telescope (+ EFOSC2) at the locations of 2 0 Type Ib/c supernovae. We measure the flux of emission lines in the stellar-continuum-subtracted spectra from which local metallicities are computed. For the supernova regions we estimate both the mean stellar age, interpreting the stellar absorption with population synthesis models, and the age of the youngest stellar populations using the H-alpha equivalent width as an age indicator. These estimates are compared with the lifetimes of single massive stars. Results: Based on our sample, we detect a tentative indication that Type Ic supernovae might explode in environments that are more metal-rich than those of Type Ib supernovae (average difference of 0.08 dex), but this is not a statistically significant result. The lower limits placed on the ages of the supernova birthplaces are overall young, although there are several cases where these appear older than what is expected for the evolution of single stars more massive than 25-30 M_{sun}. This is only true, however, assuming that the supernova progenitors were born during an instantaneous (not continuous) episode of star formation. Conclusions: These results do not conclusively favor any of the two evolutionary paths (single or binary) leading to stripped supernovae. We do note a fraction of events for which binary evolution is more likely, due to their associated age limits. The fact, however, that the supernova environments contain areas of recent (< 15 Myr) star formation and that the environmental metallicities are, at least, not against the single evolutionary scenario, suggest that this channel is also broadly consistent with the observations.
Recent observations of the Crab pulsar show no evidence for a spectral break in the infrared regime. It is argued that the observations are consistent with a power-law spectrum in the whole observable infrared - optical range. This is taken as the st arting point for an evaluation of how self-consistent incoherent synchrotron models fare in a comparison with observations. Inclusion of synchrotron self-absorption proves important as does the restriction on the observed size of the emission region imposed by the relativistic beaming thought to define the pulse profile. It is shown that the observations can be used to derive two independent constraints on the distance from the neutron star to the emission region; in addition to a direct lower limit, an indirect measure is obtained from an upper limit to the magnetic field strength. Both of these limits indicate that the emission region is located at a distance considerably larger than the light cylinder radius. The implications of this result are discussed and it is emphasized that, in order for standard incoherent synchrotron models to fit inside the light cylinder, rather special physical conditions need to be invoked.
An extensive dataset for SN 2003hv that covers the flux evolution from maximum light to day +786 is presented. The data are combined with published nebular-phase infrared spectra, and the observations are compared to model light curves and synthetic nebular spectra. SN 2003hv is a normal Type Ia supernova (SN Ia) with photometric and spectroscopic properties consistent with its rarely observed B-band decline-rate parameter, Delta m_15 = 1.61 +- 0.02. The blueshift of the most isolated [Fe II] lines in the nebular-phase optical spectrum appears consistent with those observed in the infrared at similar epochs. At late times there is a prevalent color evolution from the optical toward the near-infrared bands. We present the latest-ever detection of a SN Ia in the near-infrared in Hubble Space Telescope images. The study of the ultraviolet/optical/infrared (UVOIR) light curve reveals that a substantial fraction of the flux is missing at late times. Between 300-700 days past maximum brightness, the UVOIR light curve declines linearly following the decay of radioactive Co56, assuming full and instantaneous positron trapping. At 700 days we detect a possible slowdown of the decline in optical bands, mainly in the V band. The data are incompatible with a dramatic infrared catastrophe. However, the idea that an infrared catastrophe occurred in the densest regions before 350 days can explain the missing flux from the UVOIR wavelengths and the flat-topped profiles in the near-infrared. We argue that such a scenario is possible if the ejecta are clumpy. The observations suggest that positrons are most likely trapped in the ejecta.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا