ترغب بنشر مسار تعليمي؟ اضغط هنا

We report the discovery of a Jupiter-mass planet orbiting an M-dwarf star that gave rise to the microlensing event OGLE-2011-BLG-0265. Such a system is very rare among known planetary systems and thus the discovery is important for theoretical studie s of planetary formation and evolution. High-cadence temporal coverage of the planetary signal combined with extended observations throughout the event allows us to accurately model the observed light curve. The final microlensing solution remains, however, degenerate yielding two possible configurations of the planet and the host star. In the case of the preferred solution, the mass of the planet is $M_{rm p} = 0.9pm 0.3 M_{rm J}$, and the planet is orbiting a star with a mass $M = 0.22pm 0.06 M_odot$. The second possible configuration (2$sigma$ away) consists of a planet with $M_{rm p}=0.6pm 0.3 M_{rm J}$ and host star with $M=0.14pm 0.06 M_odot$. The system is located in the Galactic disk 3 -- 4 kpc towards the Galactic bulge. In both cases, with an orbit size of 1.5 -- 2.0 AU, the planet is a cold Jupiter -- located well beyond the snow line of the host star. Currently available data make the secure selection of the correct solution difficult, but there are prospects for lifting the degeneracy with additional follow-up observations in the future, when the lens and source star separate.
222 - J. Skowron , A. Gould 2012
We present a new algorithm to solve polynomial equations, and publish its code, which is 1.6-3 times faster than the ZROOTS subroutine that is commercially available from Numerical Recipes, depending on application. The largest improvement, when comp ared to naive solvers, comes from a fail-safe procedure that permits us to skip the majority of the calculations in the great majority of cases, without risking catastrophic failure in the few cases that these are actually required. Second, we identify a discriminant that enables a rational choice between Laguerres Method and Newtons Method (or a new intermediate method) on a case-by-case basis. We briefly review the history of root solving and demonstrate that Newtons Method was discovered neither by Newton (1671) nor by Raphson (1690), but only by Simpson (1740). Some of the arguments leading to this conclusion were first given by the British historian of science Nick Kollerstrom in 1992, but these do not appear to have penetrated the astronomical community. Finally, we argue that Numerical Recipes should voluntarily surrender its copyright protection for non-profit applications, despite the fact that, in this particular case, such protection was the major stimulant for developing our improved algorithm.
In this fourth part of the series presenting the Optical Gravitational Lensing Experiment (OGLE) microlensing studies of the dark matter halo compact objects (MACHOs) we describe results of the OGLE-III monitoring of the Small Magellanic Cloud (SMC). Three sound candidates for microlensing events were found and yielded the optical depth tau_SMC-OIII=1.30+-1.01 10^{-7}, consistent with the expected contribution from Galactic disk and SMC self-lensing. We report that event OGLE-SMC-03 is the most likely a thick disk lens candidate, the first of such type found towards the SMC. In this paper we also combined all OGLE Large and Small Magellanic Cloud microlensing results in order to refine the conclusions on MACHOs. All but one of OGLE events are most likely caused by the lensing by known populations of stars, therefore we concluded that there is no need for introducing any special dark matter compact objects in order to explain the observed events rates. Potential black hole event indicates that similar lenses can contribute only about 2 per cent to the total mass of the halo, which is still in agreement with the expected number of such objects.
339 - J. Skowron , A. Udalski , A. Gould 2011
We present the first example of binary microlensing for which the parameter measurements can be verified (or contradicted) by future Doppler observations. This test is made possible by a confluence of two relatively unusual circumstances. First, the binary lens is bright enough (I=15.6) to permit Doppler measurements. Second, we measure not only the usual 7 binary-lens parameters, but also the microlens parallax (which yields the binary mass) and two components of the instantaneous orbital velocity. Thus we measure, effectively, 6 Kepler+1 parameters (two instantaneous positions, two instantaneous velocities, the binary total mass, and the mass ratio). Since Doppler observations of the brighter binary component determine 5 Kepler parameters (period, velocity amplitude, eccentricity, phase, and position of periapsis), while the same spectroscopy yields the mass of the primary, the combined Doppler + microlensing observations would be overconstrained by 6 + (5 + 1) - (7 + 1) = 4 degrees of freedom. This makes possible an extremely strong test of the microlensing solution. We also introduce a uniform microlensing notation for single and binary lenses, we define conventions, summarize all known microlensing degeneracies and extend a set of parameters to describe full Keplerian motion of the binary lenses.
In the third part of the series presenting the Optical Gravitational Lensing Experiment (OGLE) microlensing studies of the dark matter halo compact objects (MACHOs) we describe results of the OGLE-III monitoring of the Large Magellanic Cloud (LMC). T his unprecedented data set contains almost continuous photometric coverage over 8 years of about 35 million objects spread over 40 square degrees. We report a detection of two candidate microlensing events found with the automated pipeline and an additional two, less probable, candidate events found manually. The optical depth derived for the two main candidates was calculated following a detailed blending examination and detection efficiency determination and was found to be tau=(0.16+-0.12)10^-7. If the microlensing signal we observe originates from MACHOs it means their masses are around 0.2 M_Sun and they compose only f=3+-2 per cent of the mass of the Galactic Halo. However, the more likely explanation of our detections does not involve dark matter compact objects at all and rely on natural effect of self-lensing of LMC stars by LMC lenses. In such a scenario we can almost completely rule out MACHOs in the sub-solar mass range with an upper limit at f<7 per cent reaching its minimum of f<4 per cent at M=0.1 M_Sun. For masses around M=10 M_Sun the constraints on the MACHOs are more lenient with f ~ 20 per cent. Owing to limitations of the survey there is no reasonable limit found for heavier masses, leaving only a tiny window of mass spectrum still available for dark matter compact objects.
The primary goal of this paper is to provide the evidence that can either prove or falsify the hypothesis that dark matter in the Galactic halo can clump into stellar-mass compact objects. If such objects existed, they would act as lenses to external sources in the Magellanic Clouds, giving rise to an observable effect of microlensing. We present the results of our search for such events, based on the data from the second phase of the OGLE survey (1996-2000) towards the SMC. The data set we used is comprised of 2.1 million monitored sources distributed over an area of 2.4 square degrees. We found only one microlensing event candidate, however its poor quality light curve limited our discussion on the exact distance to the lensing object. Given a single event, taking the blending (crowding of stars) into account for the detection efficiency simulations, and deriving the HST-corrected number of monitored stars, the microlensing optical depth is tau=(1.55+-1.55)10e-7. This result is consistent with the expected SMC self-lensing signal, with no need of introducing dark matter microlenses. Rejecting the unconvincing event leads to the upper limit on the fraction of dark matter in the form of MACHOs to f<20 per cent for deflectors masses around 0.4 Msun and f<11 per cent for masses between 0.003 and 0.2 Msun (95 per cent confidence limit). Our result indicates that the Milky Ways dark matter is unlikely to be clumpy and form compact objects in the sub-solar-mass range.
We present the results from the OGLE-II survey (1996-2000) towards the Large Magellanic Cloud (LMC), which has the aim of detecting the microlensing phenomena caused by dark matter compact objects in the Galactic Halo (Machos). We use high resoluti on HST images of the OGLE fields and derive the correction for the number of monitored stars in each field. This also yield blending distributions which we use in catalogue level Monte Carlo simulations of the microlensing events in order to calculate the detection efficiency of the events. We detect two candidates for microlensing events in the All Stars Sample, which translates into an optical depth of 0.43+-0.33x 10e-7. If both events were due to Macho the fraction of mass of compact dark matter objects in the Galactic halo would be 8+-6 per cent. This optical depth, however, along with the characteristics of the events, seems to be consistent with the self-lensing scenario, i.e., self-lensing alone is sufficient to explain the observed microlensing signal. Our results indicate a non-detection of Machos lensing towards the LMC with an upper limit on their abundance in the Galactic halo of 19 per cent for M=0.4 Msun and 10 per cent for masses between 0.01 and 0.2 Msun.
A microlensing event may exhibit a second brightening when the source and/or the lens is a binary star. Previous study revealed 19 such repeating event candidates among 4120 investigated microlensing light curves of the Optical Gravitational Lensing Experiment (OGLE). The same study gave the probability ~ 0.0027 for a repeating event caused by a binary lens. We present the simulations of binary source lensing events and calculate the probability of observing a second brightening in the light curve. Applying to simulated light curves the same algorithm as was used in the analysis of real OGLE data, we find the probability ~ 0.0018 of observing a second brightening in a binary source lensing curve. The expected and measured numbers of repeating events are in agreement only if one postulates that all lenses and all sources are binary. Since the fraction of binaries is believed to be <= 50%, there seems to be a discrepancy.
Microlensing events are usually selected among single-peaked non-repeating light curves in order to avoid confusion with variable stars. However, a microlensing event may exhibit a second microlensing brightening episode when the source or/and the le ns is a binary system. A careful analysis of these repeating events provides an independent way to study the statistics of wide binary stars and to detect extrasolar planets. Previous theoretical studies predicted that 0.5 - 2 % of events should repeat due to wide binary lenses. We present a systematic search for such events in about 4000 light curves of microlensing candidates detected by the Optical Gravitational Lensing Experiment (OGLE) towards the Galactic Bulge from 1992 to 2007. The search reveals a total of 19 repeating candidates, with 6 clearly due to a wide binary lens. As a by-product we find that 64 events (~2% of the total OGLE-III sample) have been miss-classified as microlensing; these miss-classified events are mostly nova or other types of eruptive stars. The number and importance of repeating events will increase considerably when the next-generation wide-field microlensing experiments become fully operational in the future.
We present nine new binary lens candidates from OGLE-III Early Warning System database for the season of 2005. We have also found four events interpreted as single mass lensing of double sources. The candidates have been selected by visual light curv es inspection. Examining the models of binary lenses in our previous studies (10 caustic crossing events of OGLE-II seasons 1997--1999 and 34 binary lens events of OGLE-III seasons 2002--2004, including one planetary event), in this work and in three publications concerning planetary events of season 2005, we find four cases of extreme mass ratio binaries (q<0.01), and almost all other models with mass ratios in the range 0.1<q<1.0, which may indicate the division between planetary systems and binary stars.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا