ترغب بنشر مسار تعليمي؟ اضغط هنا

Astrometric monitoring of the nearby early-L dwarf DE0823$-$49 has revealed a low-mass companion in a 248-day orbit that was announced in an earlier work. Here, we present new astrometric and spectroscopic observations that allow us to characterise t he system in detail. The optical spectrum shows LiI-absorption indicative of a young age and/or substellar mass for the primary component. The near-infrared spectrum is best reproduced by a binary system of brown dwarfs with spectral types of L1.5 $+$ L5.5 and effective temperatures of $2150pm100$ K and $1670pm140$ K. To conform with the photocentric orbit size measured with astrometry and the current understanding of substellar evolution, the system must have an age in the 80--500 Myr range. Evolutionary models predict component masses in the ranges of $M_1simeq0.028-0.063,M_odot$ and $M_2simeq0.018-0.045,M_odot$ with a mass ratio of $qsimeq0.64-0.74$. Multi-epoch radial velocity measurements unambiguously establish the three-dimensional orbit of the system and allow us to investigate its kinematic properties. DE0823$-$49 emerges as a rare example of a nearby brown dwarf binary with orbit, component properties, and age that are characterised well. It is a juvenile resident of the solar neighbourhood, but does not appear to belong to a known young association or moving group.
Using astrometric measurements obtained with the FORS2/VLT camera, we are searching for low-mass companions around 20 nearby ultracool dwarfs. With a single-measurement precision of 0.1 milli-arcseconds, our survey is sensitive to a wide range of com panion masses from planetary companions to binary systems. Here, we report the discovery and orbit characterisation of a new ultracool binary at a distance of 19.5 pc from Earth that is composed of the M8.5-dwarf primary DE0630-18 and a substellar companion. The nearly edge-on orbit is moderately eccentric (e=0.23) with an orbital period of 1120 d, which corresponds to a relative separation in semimajor axis of approximately 1.1 AU. We obtained a high-resolution optical spectrum with UVES/VLT and measured the systems heliocentric radial velocity. The spectrum does not exhibit lithium absorption at 670.8 nm, indicating that the system is not extremely young. A preliminary estimate of the binarys physical parameters tells us that it is composed of a primary at the stellar-substellar limit and a massive brown-dwarf companion. DE0630-18 is a new very low-mass binary system with a well-characterised orbit.
The ESPRI project relies on the astrometric capabilities offered by the PRIMA facility of the Very Large Telescope Interferometer for the discovery and study of planetary systems. Our survey consists of obtaining high-precision astrometry for a large sample of stars over several years and to detect their barycentric motions due to orbiting planets. We present the operation principle, the instruments implementation, and the results of a first series of test observations. A comprehensive overview of the instrument infrastructure is given and the observation strategy for dual-field relative astrometry is presented. The differential delay lines, a key component of the PRIMA facility which was delivered by the ESPRI consortium, are described and their performance within the facility is discussed. Observations of bright visual binaries are used to test the observation procedures and to establish the instruments astrometric precision and accuracy. The data reduction strategy for astrometry and the necessary corrections to the raw data are presented. Adaptive optics observations with NACO are used as an independent verification of PRIMA astrometric observations. The PRIMA facility was used to carry out tests of astrometric observations. The astrometric performance in terms of precision is limited by the atmospheric turbulence at a level close to the theoretical expectations and a precision of 30 micro-arcseconds was achieved. In contrast, the astrometric accuracy is insufficient for the goals of the ESPRI project and is currently limited by systematic errors that originate in the part of the interferometer beamtrain which is not monitored by the internal metrology system. Our observations led to the definition of corrective actions required to make the facility ready for carrying out the ESPRI search for extrasolar planets.
The Extrasolar Planet Search with PRIMA project (ESPRI) aims at characterising and detecting extrasolar planets by measuring the host stars reflex motion using the narrow-angle astrometry capability of the PRIMA facility at the Very Large Telescope I nterferometer. A first functional demonstration of the astrometric mode was achieved in early 2011. This marked the start of the astrometric commissioning phase with the purpose of characterising the instruments performance, which ultimately has to be sufficient for exoplanet detection. We show results obtained from the observation of bright visual binary stars, which serve as test objects to determine the instruments astrometric precision, its accuracy, and the plate scale. Finally, we report on the current status of the ESPRI project, in view of starting its scientific programme.
The fringe sensor unit (FSU) is the central element of the phase referenced imaging and micro-arcsecond astrometry (PRIMA) dual-feed facility for the Very Large Telescope interferometer (VLTI). It has been installed at the Paranal observatory in Augu st 2008 and is undergoing commissioning and preparation for science operation. Commissioning observations began shortly after installation and first results include the demonstration of spatially encoded fringe sensing and the increase in VLTI limiting magnitude for fringe tracking. However, difficulties have been encountered because the FSU does not incorporate real-time photometric correction and its fringe encoding depends on polarisation. These factors affect the control signals, especially their linearity, and can disturb the tracking control loop. To account for this, additional calibration and characterisation efforts are required. We outline the instrument concept and give an overview of the commissioning results obtained so far. We describe the effects of photometric variations and beam-train polarisation on the instrument operation and propose possible solutions. Finally, we update on the current status in view of the start of astrometric science operation with PRIMA.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا