ﻻ يوجد ملخص باللغة العربية
Astrometric monitoring of the nearby early-L dwarf DE0823$-$49 has revealed a low-mass companion in a 248-day orbit that was announced in an earlier work. Here, we present new astrometric and spectroscopic observations that allow us to characterise the system in detail. The optical spectrum shows LiI-absorption indicative of a young age and/or substellar mass for the primary component. The near-infrared spectrum is best reproduced by a binary system of brown dwarfs with spectral types of L1.5 $+$ L5.5 and effective temperatures of $2150pm100$ K and $1670pm140$ K. To conform with the photocentric orbit size measured with astrometry and the current understanding of substellar evolution, the system must have an age in the 80--500 Myr range. Evolutionary models predict component masses in the ranges of $M_1simeq0.028-0.063,M_odot$ and $M_2simeq0.018-0.045,M_odot$ with a mass ratio of $qsimeq0.64-0.74$. Multi-epoch radial velocity measurements unambiguously establish the three-dimensional orbit of the system and allow us to investigate its kinematic properties. DE0823$-$49 emerges as a rare example of a nearby brown dwarf binary with orbit, component properties, and age that are characterised well. It is a juvenile resident of the solar neighbourhood, but does not appear to belong to a known young association or moving group.
We analyse FORS2/VLT $I$-band imaging data to monitor the motions of both components in the nearest known binary brown dwarf WISE J104915.57-531906.1AB (LUH16) over one year. The astrometry is dominated by parallax and proper motion, but with a preci
We present the analysis of the gravitational microlensing event OGLE-2013-BLG-0102. The light curve of the event is characterized by a strong short-term anomaly superposed on a smoothly varying lensing curve with a moderate magnification $A_{rm max}s
We report the discovery, via the microlensing method, of a new very-low-mass binary system. By combining measurements from Earth and from the Spitzer telescope in Earth-trailing orbit, we are able to measure the microlensing parallax of the event, an
We present the discovery of only the third brown dwarf known to eclipse a non-accreting white dwarf. Gaia parallax information and multi-colour photometry confirm that the white dwarf is cool (9950$pm$150K) and has a low mass (0.45$pm$0.05~MSun), and
With Hubble Space Telescope Fine Guidance Sensor astrometry and previously published radial velocity measures we explore the exoplanetary system HD 202206. Our modeling results in a parallax, $pi_{abs} = 21.96pm0.12$ milliseconds of arc, a mass for H