ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a large-scale, volume-limited companion survey of 245 late-K to mid-M (K7-M6) dwarfs within 15 pc. Infrared adaptive optics (AO) data were analysed from the Very Large Telescope, Subaru Telescope, Canada-France-Hawaii Telescope, and MMT Ob servatory to detect close companions to the sample from $sim$1 au to 100 au, while digitised wide-field archival plates were searched for wide companions from $sim$100 au to 10,000 au. With sensitivity to the bottom of the main sequence over a separation range of 3 au to 10,000 au, multiple AO and wide-field epochs allow us to confirm candidates with common proper motions, minimize background contamination, and enable a measurement of comprehensive binary statistics. We detected 65 co-moving stellar companions and find a companion star fraction of $23.5 pm 3.2$ per cent over the 3 au to 10,000 au separation range. The companion separation distribution is observed to rise to a higher frequency at smaller separations, peaking at closer separations than measured for more massive primaries. The mass ratio distribution across the $q = 0.2 - 1.0$ range is flat, similar to that of multiple systems with solar-type primaries. The characterisation of binary and multiple star frequency for low-mass field stars can provide crucial comparisons with star forming environments and hold implications for the frequency and evolutionary histories of their associated disks and planets.
With the discovery of Y dwarfs by the WISE mission, the population of field brown dwarfs now extends to objects with temperatures comparable to those of Solar System planets. To investigate the atmospheres of these newly identified brown dwarfs, we h ave conducted a pilot study monitoring an initial sample of three late T-dwarfs (T6.5, T8 and T8.5) and one Y-dwarf (Y0) for infrared photometric variability at multiple epochs. With J-band imaging, each target was observed for a period of 1.0h to 4.5h per epoch, which covers a significant fraction of the expected rotational period. These measurements represent the first photometric monitoring for these targets. For three of the four targets (2M1047, Ross 458C and WISE0458), multi-epoch monitoring was performed, with the time span between epochs ranging from a few hours to ~2 years. During the first epoch, the T8.5 target WISE0458 exhibited variations with a remarkable min-to-max amplitude of 13%, while the second epoch light curve taken ~2 years later did not note any variability to a 3% upper limit. With an effective temperature of ~600 K, WISE0458 is the coldest variable brown dwarf published to-date, and combined with its high and variable amplitude makes it a fascinating target for detailed follow-up. The three remaining targets showed no significant variations, with a photometric precision between 0.8% and 20.0%, depending on the target brightness. Combining the new results with previous multi-epoch observations of brown dwarfs with spectral types of T5 or later, the currently identified variables have locations on the colour-colour diagram better matched by theoretical models incorporating cloud opacities rather than cloud-free atmospheres. This preliminary result requires further study to determine if there is a definitive link between variability among late-T dwarfs and their location on the colour-colour diagram.
We report the discovery of a wide co-moving substellar companion to the nearby ($D=67.5pm1.1$ pc) A3V star $zeta$ Delphini based on imaging and follow-up spectroscopic observations obtained during the course of our Volume-limited A-Star (VAST) multip licity survey. $zeta$ Del was observed over a five-year baseline with adaptive optics, revealing the presence of a previously-unresolved companion with a proper motion consistent with that of the A-type primary. The age of the $zeta$ Del system was estimated as $525pm125$ Myr based on the position of the primary on the colour-magnitude and temperature-luminosity diagrams. Using intermediate-resolution near-infrared spectroscopy, the spectrum of $zeta$ Del B is shown to be consistent with a mid-L dwarf (L$5pm2$), at a temperature of $1650pm200$ K. Combining the measured near-infrared magnitude of $zeta$ Del B with the estimated temperature leads to a model-dependent mass estimate of $50pm15$ M$_{rm Jup}$, corresponding to a mass ratio of $q=0.019pm0.006$. At a projected separation of $910pm14$ au, $zeta$ Del B is among the most widely-separated and extreme-mass ratio substellar companions to a main-sequence star resolved to-date, providing a rare empirical constraint of the formation of low-mass ratio companions at extremely wide separations.
With Herschel/PACS 134 low mass members of the Taurus star-forming region spanning the M4-L0 spectral type range and covering the transition from low mass stars to brown dwarfs were observed. Combining the new Herschel results with other programs, a total of 150 of the 154 M4-L0 Taurus members members have observations with Herschel. Among the 150 targets, 70um flux densities were measured for 7 of the 7 ClassI objects, 48 of the 67 ClassII members, and 3 of the 76 ClassIII targets. For the detected ClassII objects, the median 70um flux density level declines with spectral type, however, the distribution of excess relative to central object flux density does not change across the stellar/substellar boundary in the M4-L0 range. Connecting the 70um TBOSS values with the results from K0-M3 ClassII members results in the first comprehensive census of far-IR emission across the full mass spectrum of the stellar and substellar population of a star-forming region, and the median flux density declines with spectral type in a trend analogous to the flux density decline expected for the central objects. SEDs were constructed for all TBOSS targets covering the optical to far-IR range and extending to the submm/mm for a subset of sources. Based on an initial exploration of the impact of different physical parameters; inclination, scale height and flaring have the largest influence on the PACS flux densities. From the 24um to 70um spectral index of the SEDs, 5 new candidate transition disks were identified. The steep 24um to 70um slope for a subset of 8 TBOSS targets may be an indication of truncated disks in these systems.Two examples of mixed pair systems that include secondaries with disks were measured. Finally, comparing the TBOSS results with a Herschel study of Ophiuchus brown dwarfs reveals a lower fraction of disks around the Taurus substellar population.
Breakthrough direct detections of planetary companions orbiting A-type stars confirm the existence of massive planets at relatively large separations, but dedicated surveys are required to estimate the frequency of similar planetary systems. To measu re the first estimation of the giant exoplanetary systems frequency at large orbital separation around A-stars, we have conducted a deep-imaging survey of young (8-400 Myr), nearby (19-84 pc) A- and F-stars to search for substellar companions in the 10-300 AU range. The sample of 42 stars combines all A-stars observed in previous AO planet search surveys reported in the literature with new AO observations from VLT/NaCo and Gemini/NIRI. It represents an initial subset of the International Deep Planet Survey (IDPS) sample of stars covering M- to B-stars. The data were obtained with diffraction-limited observations in H- and Ks-band combined with angular differential imaging to suppress the speckle noise of the central stars, resulting in typical 5-sigma detection limits in magnitude difference of 12 mag at 1, 14 mag at 2 and 16 mag at 5 which is sufficient to detect massive planets. A detailed statistical analysis of the survey results is performed using Monte Carlo simulations. Considering the planet detections, we estimate the fraction of A-stars having at least one massive planet (3-14 MJup) in the range 5-320 AU to be inside 5.9-18.8% at 68% confidence, assuming a flat distribution for the mass of the planets. By comparison, the brown dwarf (15-75 MJup) frequency for the sample is 2.0-8.9% at 68% confidence in the range 5-320 AU. Assuming power law distributions for the mass and semimajor axis of the planet population, the AO data are consistent with a declining number of massive planets with increasing orbital radius which is distinct from the rising slope inferred from radial velocity (RV) surveys around evolved A-stars.
With a uniform VLT SINFONI data set of nine targets, we have developed an empirical grid of J,H,K spectra of the atmospheres of objects estimated to have very low substellar masses of sim5-20 MJup and young ages of sim1-50 Myr. Most of the targets ar e companions, objects which are especially valuable for comparison with atmosphere and evolutionary models, as they present rare cases in which the age is accurately known from the primary. Based on the sample youth, all objects are expected to have low surface gravity, and this study investigates the critical early phases of the evolution of substellar objects. The spectra are compared with grids of five different theoretical atmosphere models. This analysis represents the first systematic model comparison with infrared spectra of young brown dwarfs. The fits to the full JHK spectra of each object result in a range of best fit effective temperatures of +/-150-300K whether or not the full model grid or a subset restricted to lower log(g) values is used. This effective temperature range is significantly larger than the uncertainty typically assigned when using a single model grid. Fits to a single wavelength band can vary by up to 1000K using the different models. Since the overall shape of these spectra is governed more by the temperature than surface gravity, unconstrained model fits did not find matches with low surface gravity or a trend in log(g) with age. This suggests that empirical comparison with spectra of unambiguously young objects targets (such as these SINFONI data) may be the most reliable method to search for indications of low surface gravity and youth. For two targets, the SINFONI data are a second epoch and the data show no variations in morphology over time. The analysis of two other targets, AB Pic B and CT Cha B, suggests that these objects may have lower temperatures, and consequently lower masses, than previously estimated.
Dynamical interactions between planets and debris disks may sculpt the disk structure and impact planetary orbits, but only a few systems with both imaged planets and spatially resolved debris disks are known. With the Caltech Submm Observatory (CSO) , we have observed the HR 8799 debris disk at 350{mu}m. The 350{mu}m map is the first spatially resolved measurement of the debris disk encircling the HR 8799 planetary system at this wavelength. Both the flux and size of the emission are consistent with a Kuiper belt of dust extending from ~100-300 AU. Although the resolution of the current map is limited, the map shows an indication of offset asymmetric emission, and several scenarios for this possibility are explored with radiative transfer calculations of a star-disk system and N-body numerical simulations of planet-disk interactions with parameters representative of the HR 8799 system.
Four Ophiuchus binaries, two Class I systems and two Class II systems, with separations of ~450-1100 AU, were observed with the Owens Valley Radio Observatory (OVRO) millimeter interferometer. In each system, the 3 mm continuum maps show dust emissio n at the location of the primary star, but no emission at the position of the secondary. This result is different from observations of less evolved Class 0 binaries, in which dust emission is detected from both sources. The nondetection of secondary disks is, however, similar to the dust distribution seen in wide Class II Taurus binaries. The combined OVRO results from the Ophiuchus and Taurus binaries suggest that secondary disk masses are significantly lower than primary disk masses by the Class II stage, with initial evidence that massive secondary disks are reduced by the Class I stage. Although some of the secondaries retain hot inner disk material, the early dissipation of massive outer disks may negatively impact planet formation around secondary stars. Masses for the circumprimary disks are within the range of masses measured for disks around single T Tauri stars and, in some cases, larger than the minimum mass solar nebula. More massive primary disks are predicted by several formation models and are broadly consistent with the observations. Combining the 3 mm data with previous 1.3 mm observations, the dust opacity power-law index for each primary disk is estimated. The opacity index values are all less than the scaling for interstellar dust, possibly indicating grain growth within the circumprimary disks.
62 - J. Patience 2008
With the Navy Prototype Optical Interferometer (NPOI), the binary system Theta 1 Orionis C, the most massive member of the Trapezium, was spatially resolved over a time period extending from February 2006 to March 2007. The data show significant orbi tal motion over the 14 months, and, after combining the NPOI data with previous measurements of the system from the literature, the observations span 10 years of the orbit. Our results indicate that the secondary did not experience an unusually close periastron passage this year, in contradiction to the prediction of a recently published, highly eccentric ~11 year orbit. Future observations of this source will be required to improve the orbital solution. Possible implications of the results in terms of system distance are discussed, although a main conclusion of this work is that a definitive orbit solution will require more time to obtain sufficient phase coverage, and that the interaction effects expected at periastron did not occur in 2007.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا