ترغب بنشر مسار تعليمي؟ اضغط هنا

The International Deep Planet Survey I. The frequency of wide-orbit massive planets around A-stars

116   0   0.0 ( 0 )
 نشر من قبل Arthur Vigan
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Breakthrough direct detections of planetary companions orbiting A-type stars confirm the existence of massive planets at relatively large separations, but dedicated surveys are required to estimate the frequency of similar planetary systems. To measure the first estimation of the giant exoplanetary systems frequency at large orbital separation around A-stars, we have conducted a deep-imaging survey of young (8-400 Myr), nearby (19-84 pc) A- and F-stars to search for substellar companions in the 10-300 AU range. The sample of 42 stars combines all A-stars observed in previous AO planet search surveys reported in the literature with new AO observations from VLT/NaCo and Gemini/NIRI. It represents an initial subset of the International Deep Planet Survey (IDPS) sample of stars covering M- to B-stars. The data were obtained with diffraction-limited observations in H- and Ks-band combined with angular differential imaging to suppress the speckle noise of the central stars, resulting in typical 5-sigma detection limits in magnitude difference of 12 mag at 1, 14 mag at 2 and 16 mag at 5 which is sufficient to detect massive planets. A detailed statistical analysis of the survey results is performed using Monte Carlo simulations. Considering the planet detections, we estimate the fraction of A-stars having at least one massive planet (3-14 MJup) in the range 5-320 AU to be inside 5.9-18.8% at 68% confidence, assuming a flat distribution for the mass of the planets. By comparison, the brown dwarf (15-75 MJup) frequency for the sample is 2.0-8.9% at 68% confidence in the range 5-320 AU. Assuming power law distributions for the mass and semimajor axis of the planet population, the AO data are consistent with a declining number of massive planets with increasing orbital radius which is distinct from the rising slope inferred from radial velocity (RV) surveys around evolved A-stars.



قيم البحث

اقرأ أيضاً

We have carried out high contrast imaging of 70 young, nearby B and A stars to search for brown dwarf and planetary companions as part of the Gemini NICI Planet-Finding Campaign. Our survey represents the largest, deepest survey for planets around hi gh-mass stars (~1.5-2.5 M_sun) conducted to date and includes the planet hosts beta Pic and Fomalhaut. We obtained follow-up astrometry of all candidate companions within 400 AU projected separation for stars in uncrowded fields and identified new low-mass companions to HD 1160 and HIP 79797. We have found that the previously known young brown dwarf companion to HIP 79797 is itself a tight (3 AU) binary, composed of brown dwarfs with masses 58 (+21, -20) M_Jup and 55 (+20, -19) M_Jup, making this system one of the rare substellar binaries in orbit around a star. Considering the contrast limits of our NICI data and the fact that we did not detect any planets, we use high-fidelity Monte Carlo simulations to show that fewer than 20% of 2 M_sun stars can have giant planets greater than 4 M_Jup between 59 and 460 AU at 95% confidence, and fewer than 10% of these stars can have a planet more massive than 10 M_Jup between 38 and 650 AU. Overall, we find that large-separation giant planets are not common around B and A stars: fewer than 10% of B and A stars can have an analog to the HR 8799 b (7 M_Jup, 68 AU) planet at 95% confidence. We also describe a new Bayesian technique for determining the ages of field B and A stars from photometry and theoretical isochrones. Our method produces more plausible ages for high-mass stars than previous age-dating techniques, which tend to underestimate stellar ages and their uncertainties.
We present evidence for a new two-planet system around the giant star HD202696 (= HIP105056, BD+26 4118). The discovery is based on public HIRES radial velocity measurements taken at Keck Observatory between July 2007 and September 2014. We estimate a stellar mass of 1.91$^{+0.09}_{-0.14}M_odot$ for HD202696, which is located close to the base of the red giant branch. A two-planet self-consistent dynamical modeling MCMC scheme of the radial velocity data followed by a long-term stability test suggests planetary orbital periods of $P_{rm b}$ = 517.8$_{-3.9}^{+8.9}$ days and $P_{rm c}$ = 946.6$_{-20.9}^{+20.7}$ days, eccentricities of $e_{rm b}$ = 0.011$_{-0.011}^{+0.078}$ and $e_{rm c}$ = 0.028$_{-0.012}^{+0.065}$ , and minimum dynamical masses of $m_{rm b}$ = 2.00$_{-0.10}^{+0.22}$,$M_{mathrm{Jup}}$ and $m_{rm c}$ = 1.86$_{-0.23}^{+0.18}$,$M_{mathrm{Jup}}$, respectively. Our stable MCMC samples are consistent with orbital configurations predominantly in a mean period ratio of 11:6 and its close-by high order mean-motion commensurabilities with low eccentricities. For the majority of the stable configurations we find an aligned or anti-aligned apsidal libration (i.e. $Deltaomega$ librating around 0$^circ$ or 180$^circ$), suggesting that the HD202696 system is likely dominated by secular perturbations near the high-order 11:6 mean-motion resonance. The HD202696 system is yet another Jovian mass pair around an intermediate mass star with a period ratio below the 2:1 mean motion resonance. Therefore, the HD202696 system is an important discovery, which may shed light on the primordial disk-planet properties needed for giant planets to break the strong 2:1 mean motion resonance and settle in more compact orbits.
We have completed a high-contrast direct imaging survey for giant planets around 57 debris disk stars as part of the Gemini NICI Planet-Finding Campaign. We achieved median H-band contrasts of 12.4 mag at 0.5 and 14.1 mag at 1 separation. Follow-up o bservations of the 66 candidates with projected separation < 500 AU show that all of them are background objects. To establish statistical constraints on the underlying giant planet population based on our imaging data, we have developed a new Bayesian formalism that incorporates (1) non-detections, (2) single-epoch candidates, (3) astrometric and (4) photometric information, and (5) the possibility of multiple planets per star to constrain the planet population. Our formalism allows us to include in our analysis the previously known Beta Pictoris and the HR 8799 planets. Our results show at 95% confidence that <13% of debris disk stars have a >5MJup planet beyond 80 AU, and <21% of debris disk stars have a >3MJup planet outside of 40 AU, based on hot-start evolutionary models. We model the population of directly-imaged planets as d^2N/dMda ~ m^alpha a^beta, where m is planet mass and a is orbital semi-major axis (with a maximum value of amax). We find that beta < -0.8 and/or alpha > 1.7. Likewise, we find that beta < -0.8 and/or amax < 200 AU. If we ignore the Beta Pic and HR 8799 planets (should they belong to a rare and distinct group), we find that < 20% of debris disk stars have a > 3MJup planet beyond 10 AU, and beta < -0.8 and/or alpha < -1.5. Our Bayesian constraints are not strong enough to reveal any dependence of the planet frequency on stellar host mass. Studies of transition disks have suggested that about 20% of stars are undergoing planet formation; our non-detections at large separations show that planets with orbital separation > 40 AU and planet masses > 3 MJup do not carve the central holes in these disks.
Directly imaged planets are self-luminous companions of pre-main sequence and young main sequence stars. They reside in wider orbits ($sim10mathrm{s}-1000mathrm{s}$~AU) and generally are more massive compared to the close-in ($lesssim 10$~AU) planets . Determining the host star properties of these outstretched planetary systems is important to understand and discern various planet formation and evolution scenarios. We present the stellar parameters and metallicity ([Fe/H]) for a subsample of 18 stars known to host planets discovered by the direct imaging technique. We retrieved the high-resolution spectra for these stars from public archives and used the synthetic spectral fitting technique and Bayesian analysis to determine the stellar properties in a uniform and consistent way. For eight sources, the metallicities are reported for the first time, while the results are consistent with the previous estimates for the other sources. Our analysis shows that metallicities of stars hosting directly imaged planets are close to solar with a mean [Fe/H] = $-0.04pm0.27$~dex. The large scatter in metallicity suggests that a metal-rich environment may not be necessary to form massive planets at large orbital distances. We also find that the planet mass-host star metallicity relation for the directly imaged massive planets in wide-orbits is very similar to that found for the well studied population of short period ($lesssim 1$~yr) super-Jupiters and brown-dwarfs around main-sequence stars.
451 - F. Bouchy , G. Hebrard , S. Udry 2009
We report on the discovery of a substellar companion or a massive Jupiter orbiting the G5V star HD16760 with the spectrograph SOPHIE installed on the OHP 1.93-m telescope. Characteristics and performances of the spectrograph are presented, as well as the SOPHIE exoplanet consortium program. With a minimum mass of 14.3 Mjup, an orbital period of 465 days and an eccentricity of 0.067, HD16760b seems to be located just at the end of the mass distribution of giant planets, close to planet/brown-dwarf transition. Its quite circular orbit supports a formation in a gaseous protoplanetary disk.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا