ترغب بنشر مسار تعليمي؟ اضغط هنا

205 - J. M. Lotz 2011
We present the recent merger history of massive galaxies in a spectroscopically-confirmed proto-cluster at z=1.62. Using HST WFC3 near-infrared imaging from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS), we select clust er galaxies and z ~ 1.6 field galaxies with M_star >= 3 x 10^10 M_sun, and determine the frequency of double nuclei or close companions with projected separations less than 20 kpc co-moving and stellar mass ratios between 1:1 and roughly 10:1. We find that four out of five spectroscopically-confirmed massive proto-cluster galaxies have double nuclei, and 42 +13/-25 % of all M_star >= 3 x 10^10 M_sun cluster candidates are either in close pair systems or have double nuclei. In contrast, only 4.5 +/- 2.6% of the field galaxies are in close pair/double nuclei systems. The implied merger rate per massive galaxy in the proto-cluster is 3-10 times higher than the merger rate of massive field galaxies at z ~ 1.6, depending upon the assumed mass ratios. Close pairs in the cluster have minor merger stellar mass ratios (M_primary:M_satellite ~ 6:1), while the field pairs are typically major mergers with stellar mass ratios between 1:1 and 4:1. At least half of the cluster mergers are dissipationless, as indicated by their red colors and low 24 micron fluxes. Two of the double-nucleated cluster members have X-ray detected AGN with L_x > 10^43 erg/s, and are strong candidates for dual or offset super-massive black holes. We conclude that the massive z = 1.62 proto-cluster galaxies are undergoing accelerated assembly relative to the field population, and discuss the implications for galaxy evolution in proto-cluster environments.
73 - Casey Papovich 2011
We discuss the structural and morphological properties of galaxies in a z=1.62 proto-cluster using near-IR imaging data from Hubble Space Telescope Wide Field Camera 3 data of the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS). Th e cluster galaxies exhibit a clear color-morphology relation: galaxies with colors of quiescent stellar populations generally have morphologies consistent with spheroids, and galaxies with colors consistent with ongoing star formation have disk-like and irregular morphologies. The size distribution of the quiescent cluster galaxies shows a deficit of compact (< 1kpc), massive galaxies compared to CANDELS field galaxies at z=1.6. As a result the cluster quiescent galaxies have larger average effective sizes compared to field galaxies at fixed mass at greater than 90% significance. Combined with data from the literature, the size evolution of quiescent cluster galaxies is relatively slow from z~1.6 to the present, growing as (1+z)^(-0.6+/-0.1). If this result is generalizable, then it implies that physical processes associated with the denser cluster region seems to have caused accelerated size growth in quiescent galaxies prior to z=1.6 and slower subsequent growth at z<1.6 compared to galaxies in the lower density field. The quiescent cluster galaxies at z=1.6 have higher ellipticities compared to lower redshift samples at fixed mass, and their surface-brightness profiles suggest that they contain extended stellar disks. We argue the cluster galaxies require dissipationless (i.e., gas-poor or dry) mergers to reorganize the disk material and to match the relations for ellipticity, stellar mass, size, and color of early-type galaxies in z<1 clusters.
We describe the effect of AGN light on host galaxy optical and UV-optical colours, as determined from X-ray-selected AGN host galaxies at z~1, and compare the AGN host galaxy colours to those of a control sample matched to the AGN sample in both reds hift and stellar mass. We identify as X-ray-selected AGNs 8.7 +4/-3 per cent of the red-sequence control galaxies, 9.8 +/-3 per cent of the blue-cloud control galaxies, and 14.7 +4/-3 per cent of the green-valley control galaxies. The nuclear colours of AGN hosts are generally bluer than their outer colours, while the control galaxies exhibit redder nuclei. AGNs in blue-cloud host galaxies experience less X-ray obscuration, while AGNs in red-sequence hosts have more, which is the reverse of what is expected from general considerations of the interstellar medium. Outer and integrated colours of AGN hosts generally agree with the control galaxies, regardless of X-ray obscuration, but the nuclear colours of unobscured AGNs are typically much bluer, especially for X-ray luminous objects. Visible point sources are seen in many of these, indicating that the nuclear colours have been contaminated by AGN light and that obscuration of the X-ray radiation and visible light are therefore highly correlated. Red AGN hosts are typically slightly bluer than red-sequence control galaxies, which suggests that their stellar populations are slightly younger. We compare these colour data to current models of AGN formation. The unexpected trend of less X-ray obscuration in blue-cloud galaxies and more in red-sequence galaxies is problematic for all AGN feedback models, in which gas and dust is thought to be removed as star formation shuts down. [See paper for full abstract.]
We assess the effects of simulated active galactic nuclei (AGNs) on the colour and morphology measurements of their host galaxies. To test the morphology measurements, we select a sample of galaxies not known to host AGNs and add a series of point so urces scaled to represent specified fractions of the observed V band light detected from the resulting systems; we then compare morphology measurements of the simulated systems to measurements of the original galaxies. AGN contributions >20 per cent bias most of the morphology measurements tested, though the extent of the apparent bias depends on the morphological characteristics of the original galaxies. We test colour measurements by adding to non-AGN galaxy spectra a quasar spectrum scaled to contribute specified fractions of the rest-frame B band light detected from the resulting systems. A quasar fraction of 5 per cent can move the NUV-r colour of an elliptical galaxy from the UV-optical red sequence to the green valley, and 20 per cent can move it into the blue cloud. Combining the colour and morphology results, we find that a galaxy/AGN system with an AGN contribution >20 per cent may appear bluer and more bulge-dominated than the underlying galaxy. We conclude that (1) bulge-dominated, E/S0/Sa, and early-type morphology classifications are accurate for red AGN host galaxies and may be accurate for blue host galaxies, unless the AGN manifests itself as a well-defined point source; and (2) although highly unobscured AGNs, such as the quasar used for our experiments, can significantly bias the measured colours of AGN host galaxies, it is possible to identify such systems by examining optical images of the hosts for the presence of a point source and/or measuring the level of nuclear obscuration.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا