ترغب بنشر مسار تعليمي؟ اضغط هنا

Host galaxy colour gradients and accretion disc obscuration in AEGIS z~1 X-ray-selected active galactic nuclei

214   0   0.0 ( 0 )
 نشر من قبل Christina Pierce
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe the effect of AGN light on host galaxy optical and UV-optical colours, as determined from X-ray-selected AGN host galaxies at z~1, and compare the AGN host galaxy colours to those of a control sample matched to the AGN sample in both redshift and stellar mass. We identify as X-ray-selected AGNs 8.7 +4/-3 per cent of the red-sequence control galaxies, 9.8 +/-3 per cent of the blue-cloud control galaxies, and 14.7 +4/-3 per cent of the green-valley control galaxies. The nuclear colours of AGN hosts are generally bluer than their outer colours, while the control galaxies exhibit redder nuclei. AGNs in blue-cloud host galaxies experience less X-ray obscuration, while AGNs in red-sequence hosts have more, which is the reverse of what is expected from general considerations of the interstellar medium. Outer and integrated colours of AGN hosts generally agree with the control galaxies, regardless of X-ray obscuration, but the nuclear colours of unobscured AGNs are typically much bluer, especially for X-ray luminous objects. Visible point sources are seen in many of these, indicating that the nuclear colours have been contaminated by AGN light and that obscuration of the X-ray radiation and visible light are therefore highly correlated. Red AGN hosts are typically slightly bluer than red-sequence control galaxies, which suggests that their stellar populations are slightly younger. We compare these colour data to current models of AGN formation. The unexpected trend of less X-ray obscuration in blue-cloud galaxies and more in red-sequence galaxies is problematic for all AGN feedback models, in which gas and dust is thought to be removed as star formation shuts down. [See paper for full abstract.]



قيم البحث

اقرأ أيضاً

We use stellar population synthesis modeling to analyze the host galaxy properties of a sample of 33 UV-selected, narrow-lined active galactic nuclei (AGNs) at z ~ 2 - 3. In order to quantify the contribution of AGN emission to host galaxy broadband spectral energy distributions (SEDs), we use the subsample of 11 AGNs with photometric coverage spanning from rest-frame UV through near-IR wavelengths. Modeling the SEDs of these objects with a linear combination of stellar population and AGN templates, we infer the effect of the AGN on derived stellar population parameters. We also estimate the typical bias in derived stellar populations for AGNs lacking rest-frame near-IR wavelength coverage, and develop a method for inferring the true host galaxy properties. We compare AGN host galaxy properties to those of a sample of UV-selected, star-forming non-AGNs in the same redshift range, including a subsample carefully matched in stellar mass. Although the AGNs have higher masses and SFRs than the full non-active sample, their stellar population properties are consistent with those of the mass-selected sample, suggesting that the presence of an AGN is not connected with the cessation of star-formation activity in star-forming galaxies at z ~ 2 - 3. We suggest that a correlation between M_BH and galaxy stellar mass is already in place at this epoch. Assuming a roughly constant Eddington ratio for AGNs at all stellar masses, we are unable to detect the AGNs in low-mass galaxies because they are simply too faint.
194 - A. Merloni , M. Brusa 2013
We study the incidence of nuclear obscuration on a complete sample of 1310 AGN selected on the basis of their rest-frame 2-10 keV X-ray flux from the XMM-COSMOS survey, in the redshift range 0.3<z<3.5. We classify the AGN as obscured or un-obscured o n the basis of either the optical spectral properties and the overall SED or the shape of the X-ray spectrum. The two classifications agree in about 70% of the objects, and the remaining 30% can be further subdivided into two distinct classes: at low luminosities X-ray un-obscured AGN do not always show signs of broad lines or blue/UV continuum emission in their optical spectra, most likely due to galaxy dilution effects; at high luminosities broad line AGN may have absorbed X-ray spectra, which hints at an increased incidence of small-scale (sub-parsec) dust-free obscuration. We confirm that the fraction of obscured AGN is a decreasing function of the intrinsic X-ray luminosity, while the incidence of absorption shows significant evolution only for the most luminous AGN, which appear to be more commonly obscured at higher redshift. We find no significant difference between the mean stellar masses and star formation rates of obscured and un-obscured AGN hosts. We conclude that the physical state of the medium responsible for obscuration in AGN is complex, and mainly determined by the radiation environment (nuclear luminosity) in a small region enclosed within the gravitational sphere of influence of the central black hole, but is largely insensitive to the wider scale galactic conditions.
We develop a new diagnostic method to classify galaxies into AGN hosts, star-forming galaxies, and absorption-dominated galaxies by combining the [O III]/Hbeta ratio with rest-frame U-B color. This can be used to robustly select AGNs in galaxy sample s at intermediate redshifts (z<1). We compare the result of this optical AGN selection with X-ray selection using a sample of 3150 galaxies with 0.3<z<0.8 and I_AB<22, selected from the DEEP2 Galaxy Redshift Survey and the All-wavelength Extended Groth Strip International Survey (AEGIS). Among the 146 X-ray sources in this sample, 58% are classified optically as emission-line AGNs, the rest as star-forming galaxies or absorption-dominated galaxies. The latter are also known as X-ray bright, optically normal galaxies (XBONGs). Analysis of the relationship between optical emission lines and X-ray properties shows that the completeness of optical AGN selection suffers from dependence on the star formation rate and the quality of observed spectra. It also shows that XBONGs do not appear to be a physically distinct population from other X-ray detected, emission-line AGNs. On the other hand, X-ray AGN selection also has strong bias. About 2/3 of all emission-line AGNs at L_bol>10^44 erg/s in our sample are not detected in our 200 ks Chandra images, most likely due to moderate or heavy absorption by gas near the AGN. The 2--7 keV detection rate of Seyfert 2s at z~0.6 suggests that their column density distribution and Compton-thick fraction are similar to that of local Seyferts. Multiple sample selection techniques are needed to obtain as complete a sample as possible.
We present a sample of accreting supermassive black holes (SMBHs) in dwarf galaxies at $z<1$. We identify dwarf galaxies in the NEWFIRM Medium Band Survey with stellar masses $M_{star}<3times 10^{9} M_{odot}$ that have spectroscopic redshifts from th e DEEP2 survey and lie within the region covered by deep (flux limit of $sim 5times 10^{-17} - 6times 10^{-16} rm{erg cm}^{-2} rm{s}^{-1}$) archival Chandra X-ray data. From our sample of $605$ dwarf galaxies, $10$ exhibit X-ray emission consistent with that arising from AGN activity. If black hole mass scales roughly with stellar mass, then we expect that these AGN are powered by SMBHs with masses of $sim 10^5-10^6 M_{odot}$ and typical Eddington ratios $sim 5%$. Furthermore, we find an AGN fraction consistent with extrapolations of other searches of $sim 0.6-3%$ for $10^9 M_{odot} leq M_{star} leq 3times 10^{9} M_{odot}$ and $0.1<z<0.6$. Our AGN fraction is in good agreement with a semi-analytic model, suggesting that as we search larger volumes we may use comparisons between observed AGN fractions and models to understand seeding mechanisms in the early universe.
Merger simulations predict that tidally induced gas inflows can trigger kpc-scale dual active galactic nuclei (dAGN) in heavily obscured environments. Previously with the Very Large Array, we have confirmed four dAGN with redshifts between $0.04 < z < 0.22$ and projected separations between 4.3 and 9.2 kpc in the SDSS Stripe 82 field. Here, we present $Chandra$ X-ray observations that spatially resolve these dAGN and compare their multi-wavelength properties to those of single AGN from the literature. We detect X-ray emission from six of the individual merger components and obtain upper limits for the remaining two. Combined with previous radio and optical observations, we find that our dAGN have properties similar to nearby low-luminosity AGN, and they agree well with the black hole fundamental plane relation. There are three AGN-dominated X-ray sources, whose X-ray hardness-ratio derived column densities show that two are unobscured and one is obscured. The low obscured fraction suggests these dAGN are no more obscured than single AGN, in contrast to the predictions from simulations. These three sources show an apparent X-ray deficit compared to their mid-infrared continuum and optical [OIII] line luminosities, suggesting higher levels of obscuration, in tension with the hardness-ratio derived column densities. Enhanced mid-infrared and [OIII] luminosities from star formation may explain this deficit. There is ambiguity in the level of obscuration for the remaining five components since their hardness ratios may be affected by non-nuclear X-ray emissions, or are undetected altogether. They require further observations to be fully characterized.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا