ترغب بنشر مسار تعليمي؟ اضغط هنا

We critically examine the differences among the different bare nuclear interactions used in near-barrier heavy ion fusion analysis and Coupled-Channels calculations, and discuss the possibility of extracting the barrier parameters of the bare potenti al from above-barrier data. We show that the choice of the bare potential may be critical for the analysis of the fusion cross sections. We show also that the barrier parameters taken from above barrier data may be very wrong.
We investigate the nuclear and the Coulomb contributions to the breakup cross sections of $^6$Li in collisions with targets in different mass ranges. Comparing cross sections for different targets at collision energies corresponding to the same $E/V_ {mathrm{scriptscriptstyle B}}$, we obtain interesting scaling laws. First, we derive an approximate linear expression for the nuclear breakup cross section as a function of $A_{mathrm{% scriptscriptstyle T}}^{1/3}$. We then confirm the validity of this expression performing CDCC calculations. Scaling laws for the Coulomb breakup cross section are also investigated. In this case, our CDCC calculations indicate that this cross section has a linear dependence on the atomic number of the target. This behavior is explained by qualitative arguments. Our findings, which are consistent with previously obtained results for higher energies, are important when planning for experiments involving exotic weakly bound nuclei.
We consider the influence of breakup channels on the complete fusion of weakly bound cluster-type systems in terms of dynamic polarization potentials. It is argued that the enhancement of the cross section at sub-barrier energies may be consistent wi th recent experimental observations that nucleon transfer, often leading to breakup, is dominant compared to direct breakup. The main trends of the experimental complete fusion cross sections are analyzed in the framework of the Dynamic Polarization Potential approach. The qualitative conclusions are supported by CDCC calculations including a sequential breakup channel, the one neutron stripping of $^7$Li followed by the breakup of $^6$Li.
We have performed CDCC calculations for the $^{6}$Li + $^{59}$Co, $^{144}$Sm and $^{208}$Pb systems, to investigate the dependence of the relative importance of nuclear and Coulomb breakup on the target charge (mass) at near barrier energies. The cal culations were in good agreement with the experimental elastic scattering angular distributions for these systems and then, their predictions to the nuclear, Coulomb and total breakup were investigated. Although the relative importance of the nuclear breakup is, as expected, larger for lighter targets, this effect is not very pronounced. We also investigate a scaling of the nuclear breakup with the target mass and we compare the predictions for the integrated total breakup cross sections with experimental fusion cross sections at similar energies.
We consider the influence of breakup channels on the complete fusion of weakly bound systems in terms of dynamic polarization potentials. It is argued that the enhancement of the cross section at sub-barrier energies may be consistent with recent exp erimental observations that nucleon transfer, often leading to breakup, is dominant compared to direct breakup. The main trends of the experimental complete fusion cross section for $^{6,7}$Li + $^{209}$Bi are analyzed in the framework of the DPP approach.
The tunneling of composite systems, where breakup may occur during the barrier penetration process is considered in connection with the fusion of halo-like radioactive, neutron- and proton-rich nuclei on heavy targets. The large amount of recent and new data clearly indicates that breakup hinders the fusion at near and below the Coulomb barrier energies. However, clear evidence for the halo enhancements, seems to over ride the breakup hindrance at lower energies, owing, to a large extent, to the extended matter density distribution. In particular we report here that at sub-barrier energies the fusion cross section of the Borromean two-neutron halo nucleus $^{6}$He with the actinide nucleus $^{238}$U is significantly enhanced compared to the fusion of a no-halo $^{6}$He. This conclusion differs from that of the original work, where it was claimed that no such enhancement ensues. This sub-barrier fusion enhancement was also observed in the $^{6}$He + $^{209}$% Bi system. The role of the corresponding easily excitable low lying dipole pygmy resonance in these systems is therefore significant. The consequence of this overall enhanced fusion of halo nuclei at sub-barrier energies, on stellar evolution and nucleosynthesis is evident.
We investigate the influence of couplings among continuum states in collisions of weakly bound nuclei. For this purpose, we compare cross sections for complete fusion, breakup and elastic scattering evaluated by continuum discretized coupled channel (CDCC) calculations, including and not including these couplings. In our study, we discuss this influence in terms of the polarization potentials that reproduce the elastic wave function of the coupled coupled channel method in single channel calculations. We find that the inclusion of couplings among the continuum states renders the real part of the polarization potential more repulsive, whereas it leads to weaker apsorption to the breakup channel. We show that the non-inclusion of continuum-continuum couplings in CDCC calculations may not lead to qualitative and quantitative wrong conclusions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا