ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a model for the combined nematic and `smectic or stripe-like orders seen in recent scanning tunneling microscopy (STM) experiments in cuprates. We model the stripe order as an electronic charge density wave with associated Peierls distorti on -- a `Pomeranchuk wave. Disorder restricts this primary order to nanoscale domains, while secondary coupling to strain generates nematic order with considerably longer range.
A general constructive procedure is presented for analyzing magnetic instabilities in two-dimensional materials, in terms of [predominantly] double nesting, and applied to Hartree-Fock HF+RPA and Gutzwiller approximation GA+RPA calculations of the Hu bbard model. Applied to the cuprates, it is found that competing magnetic interactions are present only for hole doping, between half filling and the Van Hove singularity. While HF+RPA instabilities are present at all dopings (for sufficiently large Hubbard U), in a Gutzwiller approximation they are restricted to a doping range close to the range of relevance for the physical cuprates. The same model would hold for charge instabilities, except that the interaction is more likely to be q-dependent.
The phonon-mediated attractive interaction between carriers leads to the Cooper pair formation in conventional superconductors. Despite decades of research, the glue holding Cooper pairs in high-temperature superconducting cuprates is still controver sial, and the same is true as for the relative involvement of structural and electronic degrees of freedom. Ultrafast electron crystallography (UEC) offers, through observation of spatio-temporally resolved diffraction, the means for determining structural dynamics and the possible role of electron-lattice interaction. A polarized femtosecond (fs) laser pulse excites the charge carriers, which relax through electron-electron and electron-phonon coupling, and the consequential structural distortion is followed diffracting fs electron pulses. In this review, the recent findings obtained on cuprates are summarized. In particular, we discuss the strength and symmetry of the directional electron-phonon coupling in Bi2Sr2CaCu2O8+delta (BSCCO), as well as the c-axis structural instability induced by near-infrared pulses in La2CuO4 (LCO). The theoretical implications of these results are discussed with focus on the possibility of charge stripes being significant in accounting for the polarization anisotropy of BSCCO, and cohesion energy (Madelung) calculations being descriptive of the c-axis instability in LCO.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا