ترغب بنشر مسار تعليمي؟ اضغط هنا

Short Range Smectic and Long Range Nematic Order in the Pseudogap Phase of Cuprates

275   0   0.0 ( 0 )
 نشر من قبل Robert Markiewicz
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a model for the combined nematic and `smectic or stripe-like orders seen in recent scanning tunneling microscopy (STM) experiments in cuprates. We model the stripe order as an electronic charge density wave with associated Peierls distortion -- a `Pomeranchuk wave. Disorder restricts this primary order to nanoscale domains, while secondary coupling to strain generates nematic order with considerably longer range.



قيم البحث

اقرأ أيضاً

141 - Shan Wu , Yu Song , Yu He 2020
Interactions between nematic fluctuations, magnetic order and superconductivity are central to the physics of iron-based superconductors. Here we report on in-plane transverse acoustic phonons in hole-doped Sr$_{1-x}$Na$_x$Fe$_2$As$_2$ measured via i nelastic X-ray scattering, and extract both the nematic susceptibility and the nematic correlation length. By a self-contained method of analysis, for the underdoped ($x=0.36$) sample, which harbors a magnetically-ordered tetragonal phase, we find it hosts a short nematic correlation length $xi$ ~ 10 $AA$ and a large nematic susceptibility $chi_{rm nem}$. The optimal-doped ($x=0.55$) sample exhibits weaker phonon softening effects, indicative of both reduced $xi$ and $chi_{rm nem}$. Our results suggest short-range nematic fluctuations may favor superconductivity, placing emphasis on the nematic correlation length for understanding the iron-based superconductors.
The nature of the nematic state in FeSe remains one of the major unsolved mysteries in Fe- based superconductors. Both spin and orbital physics have been invoked to explain the origin of this phase. Here we present experimental evidence for frustrate d, short-range magnetic order, as suggested by several recent theoretical works, in the nematic state of FeSe. We use a combination of magnetostriction, susceptibility and resistivity measurements to probe the in-plane anisotropies of the nematic state and its associated fluctuations. Despite the absence of long-range magnetic order in FeSe, we observe a sizable in-plane magnetic susceptibility anisotropy, which is responsible for the field-induced in-plane distortion inferred from magnetostriction measurements. Further we demonstrate that all three anisotropies in FeSe are very similar to those of BaFe2As2, which strongly suggests that the nematic phase in FeSe is also of magnetic origin.
Fermi surface (FS) topology is a fundamental property of metals and superconductors. In electron-doped cuprate Nd2-xCexCuO4 (NCCO), an unexpected FS reconstruction has been observed in optimal- and over-doped regime (x=0.15-0.17) by quantum oscillati on measurements (QOM). This is all the more puzzling because neutron scattering suggests that the antiferromagnetic (AFM) long-range order, which is believed to reconstruct the FS, vanishes before x=0.14. To reconcile the conflict, a widely discussed external magnetic field-induced AFM long-range order in QOM explains the FS reconstruction as an extrinsic property. Here, we report angle-resolved photoemission (ARPES) evidence of FS reconstruction in optimal- and over-doped NCCO. The observed FSs are in quantitative agreement with QOM, suggesting an intrinsic FS reconstruction without field. This reconstructed FS, despite its importance as a basis to understand electron-doped cuprates, cannot be explained under the traditional scheme. Furthermore, the energy gap of the reconstruction decreases rapidly near x=0.17 like an order parameter, echoing the quantum critical doping in transport. The totality of the data points to a mysterious order between x=0.14 and 0.17, whose appearance favors the FS reconstruction and disappearance defines the quantum critical doping. A recent topological proposal provides an ansatz for its origin.
The magnetic properties of the layered oxypnictide LaMnAsO have been revisited using neutron scattering and magnetization measurements. The present measurements identify the N{e}el temperature $T_N$ = 360(1) K. Below $T_N$ the critical exponent descr ibing the magnetic order parameter is $beta$ = 0.33$-$0.35, consistent with a three dimensional Heisenberg model. Above this temperature, diffuse magnetic scattering indicative of short-range magnetic order is observed, and this scattering persists up to $T_{SRO}$ = 650(10) K. The magnetic susceptibility shows a weak anomaly at $T_{SRO}$ and no anomaly at $T_N$. Analysis of the diffuse scattering data using a reverse Monte Carlo algorithm indicates that above $T_N$ nearly two- dimensional, short-range magnetic order is present with a correlation length of 9.3(3) {AA} within the Mn layers at 400 K. The inelastic scattering data reveal a spin-gap of 3.5 meV in the long-range ordered state, and strong, low-energy (quasi-elastic) magnetic excitations emerging in the short-range ordered state. Comparison with other related compounds correlates the distortion of the Mn coordination tetrahedra to the sign of the magnetic exchange along the layer-stacking direction, and suggests that short-range order above $T_N$ is a common feature in the magnetic behavior of layered Mn-based pnictides and oxypnictides.
Electron interactions are pivotal for defining the electronic structure of quantum materials. In particular, the strong electron Coulomb repulsion is considered the keystone for describing the emergence of exotic and/or ordered phases of quantum matt er as disparate as high-temperature superconductivity and charge- or magnetic-order. However, a comprehensive understanding of fundamental electronic properties of quantum materials is often complicated by the appearance of an enigmatic partial suppression of low-energy electronic states, known as the pseudogap. Here we take advantage of ultrafast angle-resolved photoemission spectroscopy to unveil the temperature evolution of the low-energy density of states in the electron-doped cuprate Nd$_{text{2-x}}$Ce$_{text{x}}$CuO$_{text{4}}$, an emblematic system where the pseudogap intertwines with magnetic degrees of freedom. By photoexciting the electronic system across the pseudogap onset temperature T*, we report the direct relation between the momentum-resolved pseudogap spectral features and the spin-correlation length with an unprecedented sensitivity. This transient approach, corroborated by mean field model calculations, allows us to establish the pseudogap in electron-doped cuprates as a precursor to the incipient antiferromagnetic order even when long-range antiferromagnetic correlations are not established, as in the case of optimal doping.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا