ترغب بنشر مسار تعليمي؟ اضغط هنا

48 - H. J. Liu , L. Jiao , L. Xie 2015
Interests in two-dimensional transition-metal dichalcogenides have prompted some recent efforts to grow ultrathin layers of these materials epitaxially using molecular-beam epitaxy. However, growths of monolayer and bilayer WSe2, an important member of the transition-metal dichalcogenides family, by the molecular-beam epitaxy method remain uncharted probably because of the difficulty in generating tungsten fluxes from the elemental source. In this work, we present a scanning tunneling microscopy and spectroscopy study of molecular-beam epitaxy-grown WSe2 monolayer and bilayer, showing atomically flat epifilm with no domain boundary defect. This contrasts epitaxial MoSe2 films grown by the same method, where a dense network of the domain boudaries defects is present. The scanning tunneling spectroscopy measurements of monolayer and bilayer WSe2 domains of the same sample reveal not only the bandgap narrowing upon increasing the film thickness from monolayer to bilayer, but also a band-bending effect across the boundary between monolayer and bilayer domains. This band-bending appears to be dictated by the edge states at steps of the bilayer islands. Finally, comparison is made between the scanning tunneling spectroscopy-measured electronic bandgaps with the exciton emission energies measured by photoluminescence, and the exciton binding energies in monolayer and bilayer WSe2/MoSe2 are thus estimated.
We report a combined experimental and simulation study of deformation-induced diffusion in compacted two-dimensional amorphous granular pillars, in which thermal fluctuations play negligible role. The pillars, consisting of bidisperse cylindrical ace tal plastic particles standing upright on a substrate, are deformed uniaxially and quasistatically by a rigid bar moving at a constant speed. The plastic flow and particle rearrangements in the pillars are characterized by computing the best-fit affine transformation strain and non-affine displacement associated with each particle between two stages of deformation. The non-affine displacement exhibits exponential crossover from ballistic to diffusive behavior with respect to the cumulative deviatoric strain, indicating that in athermal granular packings, the cumulative deviatoric strain plays the role of time in thermal systems and drives effective particle diffusion. We further study the size-dependent deformation of the granular pillars by simulation, and find that different-sized pillars follow self-similar shape evolution during deformation. In addition, the yield stress of the pillars increases linearly with pillar size. Formation of transient shear lines in the pillars during deformation becomes more evident as pillar size increases. The width of these elementary shear bands is about twice the diameter of a particle, and does not vary with pillar size.
102 - Yu He , Y.-M. He , J. Liu 2014
We report the first experimental demonstration of interference-induced spectral line elimination predicted by Zhu and Scully [Phys. Rev. Lett. 76, 388 (1996)] and Ficek and Rudolph [Phys. Rev. A 60, 4245 (1999)]. We drive an exciton transition of a s elf-assembled quantum dot in order to realize a two-level system exposed to bichromatic laser field and observe nearly complete elimination of the resonance fluorescence spectral line at the driving laser frequency. This is caused by quantum interference between coupled transitions among the doubly dressed excitonic states, without population trapping. We also demonstrate multiphoton ac Stark effect with shifted subharmonic resonances and dynamical modifications of resonance fluorescence spectra by using double dressing.
The crystal structures of Ni$X_2$(pyz)$_2$ ($X$ = Cl (textbf{1}), Br (textbf{2}), I (textbf{3}) and NCS (textbf{4})) were determined at 298~K by synchrotron X-ray powder diffraction. All four compounds consist of two-dimensional (2D) square arrays se lf-assembled from octahedral NiN$_4$$X_2$ units that are bridged by pyz ligands. The 2D layered motifs displayed by textbf{1}-textbf{4} are relevant to bifluoride-bridged [Ni(HF$_2$)(pyz)$_2$]$Z$F$_6$ ($Z$ = P, Sb) which also possess the same 2D layers. In contrast, terminal $X$ ligands occupy axial positions in textbf{1}-textbf{4} and cause a staggering of adjacent layers. Long-range antiferromagnetic order occurs below 1.5 (Cl), 1.9 (Br and NCS) and 2.5~K (I) as determined by heat capacity and muon-spin relaxation. The single-ion anisotropy and $g$ factor of textbf{2}, textbf{3} and textbf{4} are measured by electron spin resonance where no zero--field splitting was found. The magnetism of textbf{1}-textbf{4} crosses a spectrum from quasi-two-dimensional to three-dimensional antiferromagnetism. An excellent agreement was found between the pulsed-field magnetization, magnetic susceptibility and $T_textrm{N}$ of textbf{2} and textbf{4}. Magnetization curves for textbf{2} and textbf{4} calculated by quantum Monte Carlo simulation also show excellent agreement with the pulsed-field data. textbf{3} is characterized as a three-dimensional antiferromagnet with the interlayer interaction ($J_perp$) slightly stronger than the interaction within the two-dimensional [Ni(pyz)$_2$]$^{2+}$ square planes ($J_textrm{pyz}$).
128 - J. Liu , J. Mohr , A. Saro 2014
(Abridged) We use 95, 150, and 220GHz observations from the SPT to examine the SZE signatures of a sample of 46 X-ray selected groups and clusters drawn from ~6 deg^2 of the XMM-BCS. These systems extend to redshift z=1.02, have characteristic masses ~3x lower than clusters detected directly in the SPT data and probe the SZE signal to the lowest X-ray luminosities (>10^42 erg s^-1) yet. We develop an analysis tool that combines the SZE information for the full ensemble of X-ray-selected clusters. Using X-ray luminosity as a mass proxy, we extract selection-bias corrected constraints on the SZE significance- and Y_500-mass relations. The SZE significance- mass relation is in good agreement with an extrapolation of the relation obtained from high mass clusters. However, the fit to the Y_500-mass relation at low masses, while in good agreement with the extrapolation from high mass SPT clusters, is in tension at 2.8 sigma with the constraints from the Planck sample. We examine the tension with the Planck relation, discussing sample differences and biases that could contribute. We also present an analysis of the radio galaxy point source population in this ensemble of X-ray selected systems. We find 18 of our systems have 843 MHz SUMSS sources within 2 arcmin of the X-ray centre, and three of these are also detected at significance >4 by SPT. Of these three, two are associated with the group brightest cluster galaxies, and the third is likely an unassociated quasar candidate. We examine the impact of these point sources on our SZE scaling relation analyses and find no evidence of biases. We also examine the impact of dusty galaxies using constraints from the 220 GHz data. The stacked sample provides 2.8$sigma$ significant evidence of dusty galaxy flux, which would correspond to an average underestimate of the SPT Y_500 signal that is (17+-9) per cent in this sample of low mass systems.
52 - Y. X. Yao , J. Liu , C. Liu 2014
We present an efficient textit{ab initio} method for calculating the electronic structure and total energy of strongly correlated electron systems. The method extends the traditional Gutzwiller approximation for one-particle operators to the evaluati on of the expectation values of two particle operators in a full many-electron Hamiltonian. The method is free of adjustable Coulomb parameters, and has no double counting issues in the calculation of total energy, and has the correct atomic limit. We demonstrate that the method describes well the bonding and dissociation behaviors of the hydrogen and nitrogen clusters. We also show that the method can satisfactorily tackle great challenging problems faced by the density functional theory recently discussed in the literature. The computational workload of our method is similar to the Hartree-Fock approach while the results are comparable to high-level quantum chemistry calculations.
94 - C. Toulouse , L. Chaix , J. Liu 2014
We used Raman and terahertz spectroscopies to investigate lattice and magnetic excitations and their cross-coupling in the hexagonal YMnO3 multiferroic. Two phonon modes are strongly affected by the magnetic order. Magnon excitations have been identi fied thanks to comparison with neutron measurements and spin wave calculations but no electromagnon has been observed. In addition, we evidenced two additional Raman active peaks. We have compared this observation with the anti-crossing between magnon and acoustic phonon branches measured by neutron. These optical measurements underly the unusual strong spin-phonon coupling.
200 - K. H. Madsen , S. Ates , J. Liu 2014
We demonstrate a single-photon collection efficiency of $(44.3pm2.1)%$ from a quantum dot in a low-Q mode of a photonic-crystal cavity with a single-photon purity of $g^{(2)}(0)=(4pm5)%$ recorded above the saturation power. The high efficiency is dir ectly confirmed by detecting up to $962pm46$ kilocounts per second on a single-photon detector on another quantum dot coupled to the cavity mode. The high collection efficiency is found to be broadband, as is explained by detailed numerical simulations. Cavity-enhanced efficient excitation of quantum dots is obtained through phonon-mediated excitation and under these conditions, single-photon indistinguishability measurements reveal long coherence times reaching $0.77pm0.19$ ns in a weak-excitation regime. Our work demonstrates that photonic crystals provide a very promising platform for highly integrated generation of coherent single photons including the efficient out-coupling of the photons from the photonic chip.
60 - J. Liu , S. Ates , M. Lorke 2013
We present an experimental and theoretical study on the gain mechanism in a photonic-crystal-cavity nanolaser with embedded quantum dots. From time-resolved measurements at low excitation power we find that four excitons are coupled to the cavity. At high excitation power we observe a smooth low-threshold transition from spontaneous emission to lasing. Before lasing emission sets in, however, the excitons are observed to saturate, and the gain required for lasing originates rather from multi-electronic transitions, which give rise to a broad emission background. We compare the experiment to a model of quantum-dot microcavity lasers and find that the number of emitters feeding the cavity must greatly exceed four, which confirms that the gain is provided by multi-electronic states. Our results are consistent with theoretical predictions.
74 - J. Liu , B. Cai , R. Carr 2013
We describe the automated calibration system for the antineutrino detectors in the Daya Bay Neutrino Experiment. This system consists of 24 identical units instrumented on 8 identical 20-ton liquid scintillator detectors. Each unit is a fully automat ed robotic system capable of deploying an LED and various radioactive sources into the detector along given vertical axes. Selected results from performance studies of the calibration system are reported.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا