ترغب بنشر مسار تعليمي؟ اضغط هنا

The impact of thermal fluctuations on the translocation dynamics of a polymer chain driven through a narrow pore has been investigated theoretically and by means of extensive Molecular-Dynamics (MD) simulation. The theoretical consideration is based on the so-called velocity Langevin (V-Langevin) equation which determines the progress of the translocation in terms of the number of polymer segments, $s(t)$, that have passed through the pore at time $t$ due to a driving force $f$. The formalism is based only on the assumption that, due to thermal fluctuations, the translocation velocity $v=dot{s}(t)$ is a Gaussian random process as suggested by our MD data. With this in mind we have derived the corresponding Fokker-Planck equation (FPE) which has a nonlinear drift term and diffusion term with a {em time-dependent} diffusion coefficient $D(t)$. Our MD simulation reveals that the driven translocation process follows a {em super}diffusive law with a running diffusion coefficient $D(t) propto t^{gamma}$ where $gamma < 1$. This finding is then used in the numerical solution of the FPE which yields an important result: for comparatively small driving forces fluctuations facilitate the translocation dynamics. As a consequence, the exponent $alpha$ which describes the scaling of the mean translocation time $<tau>$ with the length $N$ of the polymer, $<tau> propto N^{alpha}$ is found to diminish. Thus, taking thermal fluctuations into account, one can explain the systematic discrepancy between theoretically predicted duration of a driven translocation process, considered usually as a deterministic event, and measurements in computer simulations. In the non-driven case, $f=0$, the translocation is slightly subdiffusive and can be treated within the framework of fractional Brownian motion (fBm).
We suggest a theoretical description of the force-induced translocation dynamics of a polymer chain through a nanopore. Our consideration is based on the tensile (Pincus) blob picture of a pulled chain and the notion of propagating front of tensile f orce along the chain backbone, suggested recently by T. Sakaue. The driving force is associated with a chemical potential gradient that acts on each chain segment inside the pore. Depending on its strength, different regimes of polymer motion (named after the typical chain conformation, trumpet, stem-trumpet, etc.) occur. Assuming that the local driving and drag forces are equal (i.e., in a quasi-static approximation), we derive an equation of motion for the tensile front position $X(t)$. We show that the scaling law for the average translocation time $<tau>$ changes from $<tau> sim N^{2 u}/f^{1/ u}$ to $<tau> sim N^{1+ u}/f$ (for the free-draining case) as the dimensionless force ${widetilde f}_{R} = a N^{ u}f /T$ (where $a$, $N$, $ u$, $f$, $T$ are the Kuhn segment length, the chain length, the Flory exponent, the driving force, and the temperature, respectively) increases. These and other predictions are tested by Molecular Dynamics (MD) simulation. Data from our computer experiment indicates indeed that the translocation scaling exponent $alpha$ grows with the pulling force ${widetilde f}_{R}$) albeit the observed exponent $alpha$ stays systematically smaller than the theoretically predicted value. This might be associated with fluctuations which are neglected in the quasi-static approximation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا