ترغب بنشر مسار تعليمي؟ اضغط هنا

113 - R. Yanez , L. Yao , J. King 2014
The total kinetic energy release in the neutron induced fission of $^{235}$U was measured (using white spectrum neutrons from LANSCE) for neutron energies from E$_{n}$ = 3.2 to 50 MeV. In this energy range the average post-neutron total kinetic energ y release drops from 167.4 $pm$ 0.7 to 162.1 $pm$ 0.8 MeV, exhibiting a local dip near the second chance fission threshold. The values and the slope of the TKE vs. E$_{n}$ agree with previous measurements but do disagree (in magnitude) with systematics. The variances of the TKE distributions are larger than expected and apart from structure near the second chance fission threshold, are invariant for the neutron energy range from 11 to 50 MeV. We also report the dependence of the total excitation energy in fission, TXE, on neutron energy.
67 - Emily J. King 2012
Wavelet set wavelets were the first examples of wavelets that may not have associated multiresolution analyses. Furthermore, they provided examples of complete orthonormal wavelet systems in $L^2(mathbb{R}^d)$ which only require a single generating w avelet. Although work had been done to smooth these wavelets, which are by definition discontinuous on the frequency domain, nothing had been explicitly done over $mathbb{R}^d$, $d >1$. This paper, along with another one cowritten by the author, finally addresses this issue. Smoothing does not work as expected in higher dimensions. For example, Bin Hans proof of existence of Schwartz class functions which are Parseval frame wavelets and approximate Parseval frame wavelet set wavelets does not easily generalize to higher dimensions. However, a construction of wavelet sets in $hat{mathbb{R}}^d$ which may be smoothed is presented. Finally, it is shown that a commonly used class of functions cannot be the result of convolutional smoothing of a wavelet set wavelet.
Traumatic brain injury [TBI] has become a signature injury of current military conflicts, with debilitating, costly, and long-lasting effects. Although mechanisms by which head impacts cause TBI have been well-researched, the mechanisms by which blas ts cause TBI are not understood. From numerical hydrodynamic simulations, we have discovered that non-lethal blasts can induce sufficient skull flexure to generate potentially damaging loads in the brain, even without a head impact. The possibility that this mechanism may contribute to TBI has implications for injury diagnosis and armor design.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا