ترغب بنشر مسار تعليمي؟ اضغط هنا

The Excitation Energy Dependence of the Total Kinetic Energy Release in 235U(n,f)

119   0   0.0 ( 0 )
 نشر من قبل Walter Loveland
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The total kinetic energy release in the neutron induced fission of $^{235}$U was measured (using white spectrum neutrons from LANSCE) for neutron energies from E$_{n}$ = 3.2 to 50 MeV. In this energy range the average post-neutron total kinetic energy release drops from 167.4 $pm$ 0.7 to 162.1 $pm$ 0.8 MeV, exhibiting a local dip near the second chance fission threshold. The values and the slope of the TKE vs. E$_{n}$ agree with previous measurements but do disagree (in magnitude) with systematics. The variances of the TKE distributions are larger than expected and apart from structure near the second chance fission threshold, are invariant for the neutron energy range from 11 to 50 MeV. We also report the dependence of the total excitation energy in fission, TXE, on neutron energy.

قيم البحث

اقرأ أيضاً

61 - W. Loveland. , J. King 2017
We have measured the total kinetic energy release (TKE), its variance and associated fission product distributions for the neutron induced fission of 232Th and 235U for En = 2 - 90 MeV. The neutron energies were determined on an event by event basis by time of flight measurements with the white spectrum neutron beam from LANSCE. The TKE decreases non-linearly with increasing neutron energy for both systems, while the TKE variances are sensitive indicators of nth chance fission. The associated fission product distributions show the decrease in TKE with increasing beam energy that is due to the increasing probability of symmetric fission, which has a lower associated TKE, and the decreasing TKE associated with asymmetric fission, presumably due to the decreasing importance of the A = 132 shell structures.
109 - A. Pica , A.T. Chemey , L. Yao 2020
The total kinetic energy (TKE) in the fast neutron induced fission of 237Np was measured for neutron energies from En = 2.6 - 100 MeV at the LANSCE-WNR facility. The post TKE release decreases non-linearly with increasing incident neutron energy and can be represented as TKE(MeV) = (174.38 +- 0.72) - (5.11 +- 0.5821) log10 En for En > 1 MeV. Analysis of the fragment mass distributions indicates that the decrease in TKE with increasing En is a consequence of two factors; shell effects fade out at high excitation energies, resulting in the increasing occurrence of symmetric fission, and TKEasym decreases rapidly at high En.
178 - R. Yanez , W. Loveland , J. King 2016
We have measured the total kinetic energy (TKE) release for the $^{235}$U(n,f) reaction for $E_{n}$=2-100 MeV using the 2E method with an array of Si PIN diode detectors. The neutron energies were determined by time of flight measurements using the w hite spectrum neutron beam at the LANSCE facility. To benchmark the TKE measurement, the TKE release for $^{235}$U(n$_{th}$,f) was also measured using a thermal neutron beam from the Oregon State University TRIGA reactor, giving pre-neutron emission $E^*_{TKE}=170.7pm0.4$ MeV in good agreement with known values. Our measurements are thus absolute measurements. The TKE in $^{235}$U(n,f) decreases non-linearly from 169 MeV to 161 MeV for $E_{n}$=2-100 MeV. The multi-modal fission analysis of mass distributions and TKE indicates the origin of the TKE decrease with increasing neutron energy is a consequence of the fade out of asymmetric fission, which is associated with a higher TKE compared to symmetric fission. The average TKE associated with the superlong, standard I and standard II modes for a given mass is independent of neutron energy. The widths of the TKE distributions are constant from $E_{n}$=20-100 MeV and hence show no dependence with excitation energy.
177 - R. Yanez , W. Loveland , J. King 2015
We have measured the total kinetic energy (TKE) release for the $^{235}$U(n,f) reaction for $E_{n}$=2-100 MeV using the 2E method with an array of Si PIN diode detectors. The neutron energies were determined by time of flight measurements using the w hite spectrum neutron beam at the LANSCE facility. (To calibrate the apparatus, the TKE release for $^{235}$U(n$_{th}$,f) was also measured using a thermal neutron beam from the OSU TRIGA reactor). The TKE decreases non-linearly from 169.0 MeV to 161.4 MeV for $E_{n}$=2-90 MeV. The standard deviation of the TKE distribution is constant from $E_{n}$=20-90 MeV. Comparison of the data with the multi-modal fission model of Brosa indicates the TKE decrease is a consequence of the growth of symmetric fission and the corresponding decrease of asymmetric fission with increasing neutron energy. The average TKE associated with the Brosa superlong, standard I and standard II modes for a given mass is independent of neutron energy.
The 235U(n,f) cross section was measured in a wide energy range at n_TOF relative to 6Li(n,t) and 10B(n,alpha), with high resolution and in a wide energy range, with a setup based on a stack of six samples and six silicon detectors placed in the neut ron beam. This allowed us to make a direct comparison of the reaction yields under the same experimental conditions, and taking into account the forward/backward emission asymmetry. A hint of an anomaly in the 10{div}30 keV neutron energy range had been previously observed in other experiments, indicating a cross section systematically lower by several percent relative to major evaluations. The present results indicate that the evaluated cross section in the 9{div}18 keV neutron energy range is indeed overestimated, both in the recent updates of ENDF/B-VIII.0 and of the IAEA reference data. Furthermore, these new high-resolution data confirm the existence of resonance-like structures in the keV neutron energy region. The new, high accuracy results here reported may lead to a reduction of the uncertainty in the 1{div}100 keV neutron energy region. Finally, the present data provide additional confidence on the recently re-evaluated cross section integral between 7.8 and 11 eV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا