ترغب بنشر مسار تعليمي؟ اضغط هنا

116 - Y. J. Yan , P. Cheng , J. J. Ying 2012
We report the structural, magnetic and electronic transport properties of SrFe$_{2-x}$Cu$_x$As$_2$ single crystals grown by self-flux technique. SrCu$_2$As$_2$ and SrFe$_2$As$_2$ both crystallize in ThCr$_2$Si$_2$-type (122-type) structure at room te mperature, but exhibit distinct magnetic and electronic transport properties. The x-ray photoelectron spectroscopy(XPS) Cu-2p core line position, resistivity, susceptibility and positive Hall coefficient indicate that SrCu$_2$As$_2$ is an sp-band metal with Cu in the 3d$^{10}$ electronic configuration corresponding to the valence state Cu$^{1+}$. The almost unchanged Cu-2p core line position in SrFe$_{2-x}$Cu$_x$As$_2$ compared with SrCu$_2$As$_2$ indicates that partial Cu substitutions for Fe in SrFe$_2$As$_2$ may result in hole doping rather than the expected electron doping. No superconductivity is induced by Cu substitution on Fe sites, even though the structural/spin density wave(SDW) transition is gradually suppressed with increasing Cu doping.
Resistivity and magnetic susceptibility measurements under external pressure were performed on single-crystals NaFe1-xCoxAs (x=0, 0.01, 0.028, 0.075, 0.109). The maximum Tc enhanced by pressure in both underdoped and optimally doped NaFe1-xCoxAs is t he same, as high as 31 K. The overdoped sample with x = 0.075 also shows a positive pressure effect on Tc, and an enhancement of Tc by 13 K is achieved under pressure of 2.3 GPa. All the superconducting samples show large positive pressure coefficient on superconductivity, being different from Ba(Fe1-xCox)2As2. However, the superconductivity cannot be induced by pressure in heavily overdoped non-superconducting NaFe0.891Co0.109As. These results provide evidence for that the electronic structure is much different between superconducting and heavily overdoped non-superconducting NaFe1-xCoxAs, being consistent with the observation by angle-resolved photoemission spectroscopy.
We report electronic transport measurements on single crystals of NaFe$_{1-x}$Co$_x$As system. We found that the cotangent of Hall angle, cot$theta_{rm H}$, follows $T^4$ for the parent compound with filamentary superconductivity and $T^2$ for the he avily-overdoped non-superconducting sample. While it exhibits approximately $T^3$-dependence in all the superconducting samples, suggesting this behaivor is associated with bulk superconductivity in ferropnictides. A deviation develops below a characteristic temperature $T^*$ well above the structural and superconducting transitions, accompanied by a departure from power-law temperature dependence in resistivity. The doping dependence of $T^*$ resembles the crossover line of pseudogap phase in cuprates.
212 - T. Wu , J. J. Ying , G. Wu 2008
The temperature dependence of electron spin resonance (ESR) was studied in the oxypnictide superconductors LaFeAsO$_{1-x}$F$_x$ (x = 0.0 and 0.13). In the samples, the ESR signal indicates that the g factor and peak-to-peak linewidth strongly depend on temperature, especially at low temperatures. It indicates a strong coupling picture with existence of local moment. The dependence mentioned above gradually attenuates, and tends to saturation around room-temperature. This behavior could be ascribed to bottleneck effect due to coupling of local moment and itinerant electron. In addition, a Curie-Weiss like behavior is also observed in temperature dependent integral intensity for the two samples. Our results strongly support the existence of local moments in these materials while its origin is still unclear. The results also indicate strong magnetic frustration in this system, and magnetic fluctuation mechanism for superconductivity is suggested.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا