ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence for Local Moment by Electron Spin Resonance Study on Polycrystalline LaFeAsO$_{1-x}$F$_x$ (x=0 and 0.13)

214   0   0.0 ( 0 )
 نشر من قبل X. H. Chen
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The temperature dependence of electron spin resonance (ESR) was studied in the oxypnictide superconductors LaFeAsO$_{1-x}$F$_x$ (x = 0.0 and 0.13). In the samples, the ESR signal indicates that the g factor and peak-to-peak linewidth strongly depend on temperature, especially at low temperatures. It indicates a strong coupling picture with existence of local moment. The dependence mentioned above gradually attenuates, and tends to saturation around room-temperature. This behavior could be ascribed to bottleneck effect due to coupling of local moment and itinerant electron. In addition, a Curie-Weiss like behavior is also observed in temperature dependent integral intensity for the two samples. Our results strongly support the existence of local moments in these materials while its origin is still unclear. The results also indicate strong magnetic frustration in this system, and magnetic fluctuation mechanism for superconductivity is suggested.

قيم البحث

اقرأ أيضاً

89 - C. Hess , H. Grafe , A. Kondrat 2016
Orbital ordering has recently emerged as another important state in iron based superconductors, and its role for superconductivity as well as its connection to magnetic order and orthorhombic lattice distortion are heavily debated. In order to search for signatures of this so-called nematic phase in oxypnictides, we revisit the normal state properties of the pnictide superconductor LaFeAsO$_{1-x}$F$_x$ with a focus on resistivity, Nernst effect, thermal expansion, and $^{75}$As NMR data. The transport properties at the underdoped level $x=0.05$ exhibit pronounced anomalies at about the same temperature where undoped LaFeAsO develops long-range nematic ordering, i.e. at about 160 K. Furthermore, the $^{75}$As-NMR spin-lattice relaxation rate $1/(T_1T)$ reveals a progressive slowing down of spin fluctuations. Yet, long-range magnetic order and also a detectable orthorhombic lattice distortion are absent. Thus, we conclude from the data that short-range orbital-nematic ordering or a slowly fluctuating form of it sets in near 160 K. Remarkably, all anomalies in the transport and also the indications of slow spin fluctuations disappear close to optimal doping $x=0.1$ which suggests that in LaFeAsO$_{1-x}$F$_x$ the nematic phase actually competes with superconductivity.
375 - Q. Huang , Jun Zhao , J. W. Lynn 2008
We use neutron scattering to study the structural distortion and antiferromagnetic (AFM) order in LaFeAsO$_{1-x}$F$_{x}$ as the system is doped with fluorine (F) to induce superconductivity. In the undoped state, LaFeAsO exhibits a structural distort ion, changing the symmetry from tetragonal (space group $P4/nmm$) to orthorhombic (space group $Cmma$) at 155 K, and then followed by an AFM order at 137 K. Doping the system with F gradually decreases the structural distortion temperature, but suppresses the long range AFM order before the emergence of superconductivity. Therefore, while superconductivity in these Fe oxypnictides can survive in either the tetragonal or the orthorhombic crystal structure, it competes directly with static AFM order.
Spectroscopic ellipsometry is used to determine the dielectric function of the superconducting LaFeAsO$_{0.9}$F$_{0.1}$ ($T_c$ = 27 K) and undoped LaFeAsO polycrystalline samples in the wide range 0.01-6.5 eV at temperatures 10 $leq T leq$ 350 K. The free charge carrier response in both samples is heavily damped with the effective carrier density as low as 0.040$pm$0.005 electrons per unit cell. The spectral weight transfer in the undoped LaFeAsO associated with opening of the pseudogap at about 0.65 eV is restricted at energies below 2 eV. The spectra of superconducting LaFeAsO$_{0.9}$F$_{0.1}$ reveal a significant transfer of the spectral weight to a broad optical band above 4 eV with increasing temperature. Our data may imply that the electronic states near the Fermi surface are strongly renormalized due to electron-phonon and/or electron-electron interactions.
Low energy spin fluctuations are studied for the electron-doped Fe-based superconductor LaFeAsO(1-x)F(x) by inelastic neutron scattering up to the energy transfer of w = 15 meV using polycrystalline samples. Superconducting samples (x=0.057, Tc=25 K and x=0.082, Tc=29 K) show dynamical spin susceptibility chi(w) almost comparable with the parent samples. However chi(w) is almost vanished in the x=0.158 sample where the superconductivity is highly suppressed. These results are compatible with the theoretical suggestions that the spin fluctuation plays an important role for the superconductivity.
150 - S. C. Zhao , D. Hou , Y. Wu 2008
Raman spectra have been measured on iron-based quaternary CeO$_{1-x}$F$_x$FeAs and LaO$_{1-x}$F$_x$FeAs with varying fluorine doping at room temperatures. A group analysis has been made to clarify the optical modes. Based on the first principle calcu lations, the observed phonon modes can be assigned accordingly. In LaO$_{1-x}$F$_x$FeAs, the E$_g$ and A$_{1g}$ modes related to the vibrations of La, are suppressed with increasing F doping. However F doping only has a small effect on the E$_g$ and A$_{1g}$ modes of Fe and As. The Raman modes of La and As are absent in rare-earth substituted CeO$_{1-x}$F$_x$FeAs, and the E$_g$ mode of oxygen, corresponding to the in-plane vibration of oxygen, moves to around 450 cm$^{-1}$ and shows a very sharp peak. Electronic scattering background is low and electron-phonon coupling is not evident for the observed phonon modes. Three features are found above 500 cm$^{-1}$, which may be associated with multi-phonon process. Nevertheless it is also possible that they are related to magnetic fluctuations or interband transitions of d orbitals considering their energies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا