ﻻ يوجد ملخص باللغة العربية
The temperature dependence of electron spin resonance (ESR) was studied in the oxypnictide superconductors LaFeAsO$_{1-x}$F$_x$ (x = 0.0 and 0.13). In the samples, the ESR signal indicates that the g factor and peak-to-peak linewidth strongly depend on temperature, especially at low temperatures. It indicates a strong coupling picture with existence of local moment. The dependence mentioned above gradually attenuates, and tends to saturation around room-temperature. This behavior could be ascribed to bottleneck effect due to coupling of local moment and itinerant electron. In addition, a Curie-Weiss like behavior is also observed in temperature dependent integral intensity for the two samples. Our results strongly support the existence of local moments in these materials while its origin is still unclear. The results also indicate strong magnetic frustration in this system, and magnetic fluctuation mechanism for superconductivity is suggested.
Orbital ordering has recently emerged as another important state in iron based superconductors, and its role for superconductivity as well as its connection to magnetic order and orthorhombic lattice distortion are heavily debated. In order to search
We use neutron scattering to study the structural distortion and antiferromagnetic (AFM) order in LaFeAsO$_{1-x}$F$_{x}$ as the system is doped with fluorine (F) to induce superconductivity. In the undoped state, LaFeAsO exhibits a structural distort
Spectroscopic ellipsometry is used to determine the dielectric function of the superconducting LaFeAsO$_{0.9}$F$_{0.1}$ ($T_c$ = 27 K) and undoped LaFeAsO polycrystalline samples in the wide range 0.01-6.5 eV at temperatures 10 $leq T leq$ 350 K. The
Low energy spin fluctuations are studied for the electron-doped Fe-based superconductor LaFeAsO(1-x)F(x) by inelastic neutron scattering up to the energy transfer of w = 15 meV using polycrystalline samples. Superconducting samples (x=0.057, Tc=25 K
Raman spectra have been measured on iron-based quaternary CeO$_{1-x}$F$_x$FeAs and LaO$_{1-x}$F$_x$FeAs with varying fluorine doping at room temperatures. A group analysis has been made to clarify the optical modes. Based on the first principle calcu