ترغب بنشر مسار تعليمي؟ اضغط هنا

SweepFinder is a popular program that implements a powerful likelihood-based method for detecting recent positive selection, or selective sweeps. Here, we present SweepFinder2, an extension of SweepFinder with increased sensitivity and robustness to the confounding effects of mutation rate variation and background selection, as well as increased flexibility that enables the user to examine genomic regions in greater detail and to specify a fixed distance between test sites. Moreover, SweepFinder2 enables the use of invariant sites for sweep detection, increasing both its power and precision relative to SweepFinder.
We present a non-supersymmetric theory with a naturally light dilaton. It is based on a 5D holographic description of a conformal theory perturbed by a close-to-marginal operator of dimension 4-epsilon, which develops a condensate. As long as the dim ension of the perturbing operator remains very close to marginal (even for large couplings) a stable minimum at hierarchically small scales is achieved, where the dilaton mass squared is suppressed by epsilon. At the same time the cosmological constant in this sector is also suppressed by epsilon, and thus parametrically smaller than in a broken SUSY theory. As a byproduct we also present an exact solution to the scalar-gravity system that can be interpreted as a new holographic realization of spontaneously broken conformal symmetry. Even though this metric deviates substantially from AdS space in the deep IR it still describes a non-linearly realized exactly conformal theory. We also display the effective potential for the dilaton for arbitrary holographic backgrounds.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا