ترغب بنشر مسار تعليمي؟ اضغط هنا

102 - J. H. K. Wu 2013
Using the data from the Large Area Telescope on board the Fermi Gamma-ray Space Telescope, we have searched for the gamma-ray pulsations from the direction of globular cluster M28 (NGC 6626). We report the discovery of a signal with the frequency con sistent with that of the energetic millisecond pulsar (MSP) PSR B1821-24 in M28. A weighted H-test test statisic (TS) of 28.8 is attained which corresponds to a chance probability of ~1e-5 (4.3-sigma detection). With a phase-resolved analysis, the pulsed component is found to contribute ~25% of the total observed gamma-ray emission from the cluster. On the other hand, the unpulsed level provides a constraint for the underlying MSP population and the fundamental plane relations for the scenario of inverse Compton scattering. Follow-up timing observations in radio/X-ray are encouraged for further investigating this periodic signal candidate.
248 - J. H. K. Wu 2011
We report the discovery of GeV emission at the position of supernova remnant Kes 17 by using the data from the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. Kes 17 can be clearly detected with a significance of ~12 sigma in the 1 - 20 GeV range. Moreover, a number of gamma-ray sources were detected in its vicinity. The gamma-ray spectrum of Kes 17 can be well described by a simple power-law with a photon index of ~ 2.4. Together with the multi-wavelength evidence for its interactions with the nearby molecular cloud, the gamma-ray detection suggests that Kes 17 is a candidate acceleration site for cosmic-rays.
94 - C. Y. Hui 2011
We present a detailed analysis of the gamma-ray emission from HESS J1745-303 with the data obtained by the Fermi Gamma-ray Space Telescope in the first ~29 months observation.The source can be clearly detected at the level of ~18-sigma and ~6-sigma i n 1-20 GeV and 10-20 GeV respectively. Different from the results obtained by the Compton Gamma-ray Observatory, we do not find any evidence of variability. Most of emission in 10-20 GeV is found to coincide with the region C of HESS J1745-303. A simple power-law is sufficient to describe the GeV spectrum with a photon index of ~2.6. The power-law spectrum inferred in the GeV regime can be connected to that of a particular spatial component of HESS J1745-303 in 1-10 TeV without any spectral break. These properties impose independent constraints for understanding the nature of this dark particle accelerator.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا