ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate the stability of a three spin state mixture of ultracold fermionic $^6$Li atoms over a range of magnetic fields encompassing three Feshbach resonances. For most field values, we attribute decay of the atomic population to three-body pr ocesses involving one atom from each spin state and find that the three-body loss coefficient varies by over four orders of magnitude. We observe high stability when at least two of the three scattering lengths are small, rapid loss near the Feshbach resonances, and two unexpected resonant loss features. At our highest fields, where all pairwise scattering lengths are approaching $a_t = -2140 a_0$, we measure a three-body loss coefficient $L_3 simeq 5times 10^{-22} mathrm{cm}^6/mathrm{s}$ and a trend toward lower decay rates for higher fields indicating that future studies of color superfluidity and trion formation in a SU(3) symmetric Fermi gas may be feasible.
We propose a method to prepare a sample of fermionic atoms in a three-dimensional (3D) optical lattice at unprecedentedly low temperatures and uniform filling factors. The process involves adiabatic loading of atoms into multiple energy bands of an o ptical lattice followed by a filtering stage whereby atoms from all but the ground band are removed. Of critical importance is the use of a non-harmonic trapping potential, taken here to be the radial profile of a high-order Laguerre-Gaussian laser beam, to provide external confinement for the atoms. For realistic experimental parameters, this procedure should produce samples with temperatures $sim10^{-3}$ of the Fermi temperature. This would allow the investigation of the low-temperature phase diagram of the Fermi-Hubbard model as well as the initialization of a high-fidelity quantum register.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا